Tipper#
This object can be used to store tipper (ZTEM) surveys - a natural-source geophysical method. Data are provided in the frequency-domain as point source measurements of tipper data.
The following example shows how to generate a tipper survey with associated data stored in geoh5
format and accessible from Geoscience ANALYST.
import numpy as np
from geoh5py.objects import TipperBaseStations, TipperReceivers
from geoh5py.workspace import Workspace
# Create a new project
workspace = Workspace("my_project.geoh5")
# Define the pole locations
n_stations = 64
n_lines = 2
x_loc, y_loc = np.meshgrid(
np.linspace(0, 60, n_stations), np.linspace(-20, 20.0, n_lines)
)
vertices = np.c_[x_loc.ravel(), y_loc.ravel(), np.zeros_like(x_loc).ravel()]
# Assign a line ID to the poles (vertices)
parts = np.kron(np.arange(n_lines), np.ones(n_stations)).astype("int")
# Create the survey from vertices
receivers = TipperReceivers.create(workspace, vertices=vertices, parts=parts)
base = TipperBaseStations.create(workspace, vertices=vertices)
/home/docs/checkouts/readthedocs.org/user_builds/mirageoscience-geoh5py/conda/latest/lib/python3.10/site-packages/geoh5py/workspace/workspace.py:1104: UserWarning: From version 0.8.0, the 'h5file' attribute must be a string or path to an existing file, or user must call the 'create' method. We will attempt to `save` the file for you, but this behaviour will be removed in future releases.
warnings.warn(
We have so far created two seperate entities, one for the receiver locations and another for the base station(s). In order to finalize the survey, the association must be made between the two entities:
receivers.base_station = base
or equivalently
base.receivers = receivers
Only one of the two options above is needed.
Metadata#
Along with the TipperReceivers, the metadata contains all the necessary information to define the geophysical experiment.
receivers.metadata
{'EM Dataset': {'Base stations': UUID('a2706925-08bd-4d18-9323-c74f99a63378'),
'Channels': [],
'Input type': 'Rx and base stations',
'Property groups': [],
'Receivers': UUID('53131c75-b405-4aa5-85b4-62f4c8d17a30'),
'Survey type': 'ZTEM',
'Unit': 'Hertz (Hz)'}}
Channels#
List of frequencies at which the data are provided.
receivers.channels = [30.0, 45.0, 90.0, 180.0, 360.0, 720.0]
Input type#
Generic label used in the geoh5
standard for all EM survey entities. Restricted to Rx and base station
in the case of a tipper survey.
Property groups#
List of PropertyGroups defining the various data components (e.g. Txz (real)
, Tyz (imag)
, …). It is not required to supply all components of the impedence tensor, but it is expected that each component contains a list of data channels of length and in the same order as the Channels
(one Data
per frequency).
The class method add_components_data can help users add data from nested dictionaries. Below is an example using four components:
# Arbitrary data generator using sine functions
def data_fun(c, f):
return (c + 1.0) * (f + 1.0) * np.sin(f * np.pi * (x_loc * y_loc).ravel() / 400.0)
# Create a nested dictionary of component and frequency data.
data = {
component: {
f"{component}_{freq}": {"values": data_fun(cc, ff)}
for ff, freq in enumerate(receivers.channels)
}
for cc, component in enumerate(
[
"Txz (real)",
"Txz (imaginary)",
"Tyz (real)",
"Tyz (imaginary)",
]
)
}
receivers.add_components_data(data)
[<geoh5py.groups.property_group.PropertyGroup at 0x76cbab552710>,
<geoh5py.groups.property_group.PropertyGroup at 0x76cbab553940>,
<geoh5py.groups.property_group.PropertyGroup at 0x76cbab552230>,
<geoh5py.groups.property_group.PropertyGroup at 0x76cbb75838b0>]
Metadata are updated immediately to reflect the addition of components:
receivers.metadata
{'EM Dataset': {'Base stations': UUID('a2706925-08bd-4d18-9323-c74f99a63378'),
'Channels': [30.0, 45.0, 90.0, 180.0, 360.0, 720.0],
'Input type': 'Rx and base stations',
'Property groups': ['Txz (real)',
'Txz (imaginary)',
'Tyz (real)',
'Tyz (imaginary)'],
'Receivers': UUID('53131c75-b405-4aa5-85b4-62f4c8d17a30'),
'Survey type': 'ZTEM',
'Unit': 'Hertz (Hz)'}}
Data channels associated with each component can be quickly accessed through the BaseEMSurvey.components property:
receivers.components
{'Txz (real)': [<geoh5py.data.float_data.FloatData at 0x76cbab552cb0>,
<geoh5py.data.float_data.FloatData at 0x76cbab5525f0>,
<geoh5py.data.float_data.FloatData at 0x76cbab552da0>,
<geoh5py.data.float_data.FloatData at 0x76cbab552dd0>,
<geoh5py.data.float_data.FloatData at 0x76cbab552170>,
<geoh5py.data.float_data.FloatData at 0x76cbab5526b0>],
'Txz (imaginary)': [<geoh5py.data.float_data.FloatData at 0x76cbab5520b0>,
<geoh5py.data.float_data.FloatData at 0x76cbbc3f30d0>,
<geoh5py.data.float_data.FloatData at 0x76cbbc3f3fa0>,
<geoh5py.data.float_data.FloatData at 0x76cbbc3f3c70>,
<geoh5py.data.float_data.FloatData at 0x76cbbc3f3670>,
<geoh5py.data.float_data.FloatData at 0x76cbbc3f3d30>],
'Tyz (real)': [<geoh5py.data.float_data.FloatData at 0x76cbbc3f3700>,
<geoh5py.data.float_data.FloatData at 0x76cbaab80bb0>,
<geoh5py.data.float_data.FloatData at 0x76cbaab80be0>,
<geoh5py.data.float_data.FloatData at 0x76cbaab80d60>,
<geoh5py.data.float_data.FloatData at 0x76cbaab80e50>,
<geoh5py.data.float_data.FloatData at 0x76cbaab80f70>],
'Tyz (imaginary)': [<geoh5py.data.float_data.FloatData at 0x76cbaab81240>,
<geoh5py.data.float_data.FloatData at 0x76cbbc3f2320>,
<geoh5py.data.float_data.FloatData at 0x76cbbc3f2ec0>,
<geoh5py.data.float_data.FloatData at 0x76cbbc3f32e0>,
<geoh5py.data.float_data.FloatData at 0x76cbbc3f3760>,
<geoh5py.data.float_data.FloatData at 0x76cbbc3f37f0>]}
Receivers#
Generic label used in the geoh5
standard for EM survey to identify the TipperReceivers entity.
Base stations#
Generic label used in the geoh5
standard for EM survey to identify the TipperBaseStations entity.
Survey type#
Label identifier for ZTEM
survey type.
Unit#
Units for frequency sampling of the data: Hertz (Hz)
, KiloHertz (kHz)
, MegaHertz (MHz)
or Gigahertz (GHz)
.
workspace.finalize()