Tipper#
This object can be used to store tipper (ZTEM) surveys - a natural-source geophysical method. Data are provided in the frequency-domain as point source measurements of tipper data.
The following example shows how to generate a tipper survey with associated data stored in geoh5
format and accessible from Geoscience ANALYST.
import numpy as np
from geoh5py.objects import TipperBaseStations, TipperReceivers
from geoh5py.workspace import Workspace
# Create a new project
workspace = Workspace("my_project.geoh5")
# Define the pole locations
n_stations = 64
n_lines = 2
x_loc, y_loc = np.meshgrid(
np.linspace(0, 60, n_stations), np.linspace(-20, 20.0, n_lines)
)
vertices = np.c_[x_loc.ravel(), y_loc.ravel(), np.zeros_like(x_loc).ravel()]
# Assign a line ID to the poles (vertices)
parts = np.kron(np.arange(n_lines), np.ones(n_stations)).astype("int")
# Create the survey from vertices
receivers = TipperReceivers.create(workspace, vertices=vertices, parts=parts)
base = TipperBaseStations.create(workspace, vertices=vertices)
/home/docs/checkouts/readthedocs.org/user_builds/mirageoscience-geoh5py/conda/latest/lib/python3.10/site-packages/geoh5py/workspace/workspace.py:1104: UserWarning: From version 0.8.0, the 'h5file' attribute must be a string or path to an existing file, or user must call the 'create' method. We will attempt to `save` the file for you, but this behaviour will be removed in future releases.
warnings.warn(
We have so far created two seperate entities, one for the receiver locations and another for the base station(s). In order to finalize the survey, the association must be made between the two entities:
receivers.base_station = base
or equivalently
base.receivers = receivers
Only one of the two options above is needed.
Metadata#
Along with the TipperReceivers, the metadata contains all the necessary information to define the geophysical experiment.
receivers.metadata
{'EM Dataset': {'Base stations': UUID('e86a6659-cc99-49b5-a660-2f13bf4f55ce'),
'Channels': [],
'Input type': 'Rx and base stations',
'Property groups': [],
'Receivers': UUID('7d9781c5-3645-4f7b-8d1a-b1469b7c9a7a'),
'Survey type': 'ZTEM',
'Unit': 'Hertz (Hz)'}}
Channels#
List of frequencies at which the data are provided.
receivers.channels = [30.0, 45.0, 90.0, 180.0, 360.0, 720.0]
Input type#
Generic label used in the geoh5
standard for all EM survey entities. Restricted to Rx and base station
in the case of a tipper survey.
Property groups#
List of PropertyGroups defining the various data components (e.g. Txz (real)
, Tyz (imag)
, …). It is not required to supply all components of the impedence tensor, but it is expected that each component contains a list of data channels of length and in the same order as the Channels
(one Data
per frequency).
The class method add_components_data can help users add data from nested dictionaries. Below is an example using four components:
# Arbitrary data generator using sine functions
def data_fun(c, f):
return (c + 1.0) * (f + 1.0) * np.sin(f * np.pi * (x_loc * y_loc).ravel() / 400.0)
# Create a nested dictionary of component and frequency data.
data = {
component: {
f"{component}_{freq}": {"values": data_fun(cc, ff)}
for ff, freq in enumerate(receivers.channels)
}
for cc, component in enumerate(
[
"Txz (real)",
"Txz (imaginary)",
"Tyz (real)",
"Tyz (imaginary)",
]
)
}
receivers.add_components_data(data)
[<geoh5py.groups.property_group.PropertyGroup at 0x7573d2be01c0>,
<geoh5py.groups.property_group.PropertyGroup at 0x7573cab47be0>,
<geoh5py.groups.property_group.PropertyGroup at 0x7573d8007ac0>,
<geoh5py.groups.property_group.PropertyGroup at 0x7573d80071f0>]
Metadata are updated immediately to reflect the addition of components:
receivers.metadata
{'EM Dataset': {'Base stations': UUID('e86a6659-cc99-49b5-a660-2f13bf4f55ce'),
'Channels': [30.0, 45.0, 90.0, 180.0, 360.0, 720.0],
'Input type': 'Rx and base stations',
'Property groups': ['Txz (real)',
'Txz (imaginary)',
'Tyz (real)',
'Tyz (imaginary)'],
'Receivers': UUID('7d9781c5-3645-4f7b-8d1a-b1469b7c9a7a'),
'Survey type': 'ZTEM',
'Unit': 'Hertz (Hz)'}}
Data channels associated with each component can be quickly accessed through the BaseEMSurvey.components property:
receivers.components
{'Txz (real)': [<geoh5py.data.float_data.FloatData at 0x7573cab47df0>,
<geoh5py.data.float_data.FloatData at 0x7573d805e7a0>,
<geoh5py.data.float_data.FloatData at 0x7573d805e650>,
<geoh5py.data.float_data.FloatData at 0x7573d8005e70>,
<geoh5py.data.float_data.FloatData at 0x7573d80047c0>,
<geoh5py.data.float_data.FloatData at 0x7573d8004c70>],
'Txz (imaginary)': [<geoh5py.data.float_data.FloatData at 0x7573d80074f0>,
<geoh5py.data.float_data.FloatData at 0x7573d8007cd0>,
<geoh5py.data.float_data.FloatData at 0x7573ca168640>,
<geoh5py.data.float_data.FloatData at 0x7573ca1686d0>,
<geoh5py.data.float_data.FloatData at 0x7573ca168820>,
<geoh5py.data.float_data.FloatData at 0x7573ca168940>],
'Tyz (real)': [<geoh5py.data.float_data.FloatData at 0x7573ca168a60>,
<geoh5py.data.float_data.FloatData at 0x7573ca169750>,
<geoh5py.data.float_data.FloatData at 0x7573ca169780>,
<geoh5py.data.float_data.FloatData at 0x7573ca169900>,
<geoh5py.data.float_data.FloatData at 0x7573ca1699f0>,
<geoh5py.data.float_data.FloatData at 0x7573ca169b10>],
'Tyz (imaginary)': [<geoh5py.data.float_data.FloatData at 0x7573ca169de0>,
<geoh5py.data.float_data.FloatData at 0x7573ca16a800>,
<geoh5py.data.float_data.FloatData at 0x7573ca16a830>,
<geoh5py.data.float_data.FloatData at 0x7573ca16a9b0>,
<geoh5py.data.float_data.FloatData at 0x7573ca16aaa0>,
<geoh5py.data.float_data.FloatData at 0x7573ca16abc0>]}
Receivers#
Generic label used in the geoh5
standard for EM survey to identify the TipperReceivers entity.
Base stations#
Generic label used in the geoh5
standard for EM survey to identify the TipperBaseStations entity.
Survey type#
Label identifier for ZTEM
survey type.
Unit#
Units for frequency sampling of the data: Hertz (Hz)
, KiloHertz (kHz)
, MegaHertz (MHz)
or Gigahertz (GHz)
.
workspace.finalize()