Tipper#
This object can be used to store tipper (ZTEM) surveys - a natural-source geophysical method. Data are provided in the frequency-domain as point source measurements of tipper data.
The following example shows how to generate a tipper survey with associated data stored in geoh5
format and accessible from Geoscience ANALYST.
import numpy as np
from geoh5py.objects import TipperBaseStations, TipperReceivers
from geoh5py.workspace import Workspace
# Create a new project
workspace = Workspace("my_project.geoh5")
# Define the pole locations
n_stations = 64
n_lines = 2
x_loc, y_loc = np.meshgrid(
np.linspace(0, 60, n_stations), np.linspace(-20, 20.0, n_lines)
)
vertices = np.c_[x_loc.ravel(), y_loc.ravel(), np.zeros_like(x_loc).ravel()]
# Assign a line ID to the poles (vertices)
parts = np.kron(np.arange(n_lines), np.ones(n_stations)).astype("int")
# Create the survey from vertices
receivers = TipperReceivers.create(workspace, vertices=vertices, parts=parts)
base = TipperBaseStations.create(workspace, vertices=vertices)
/home/docs/checkouts/readthedocs.org/user_builds/mirageoscience-geoh5py/conda/latest/lib/python3.10/site-packages/geoh5py/workspace/workspace.py:1104: UserWarning: From version 0.8.0, the 'h5file' attribute must be a string or path to an existing file, or user must call the 'create' method. We will attempt to `save` the file for you, but this behaviour will be removed in future releases.
warnings.warn(
We have so far created two seperate entities, one for the receiver locations and another for the base station(s). In order to finalize the survey, the association must be made between the two entities:
receivers.base_station = base
or equivalently
base.receivers = receivers
Only one of the two options above is needed.
Metadata#
Along with the TipperReceivers, the metadata contains all the necessary information to define the geophysical experiment.
receivers.metadata
{'EM Dataset': {'Base stations': UUID('2068b8ff-4089-43bf-9efe-bc191b8ea92b'),
'Channels': [],
'Input type': 'Rx and base stations',
'Property groups': [],
'Receivers': UUID('b90a6eac-aa90-4c8c-b588-71d782222c45'),
'Survey type': 'ZTEM',
'Unit': 'Hertz (Hz)'}}
Channels#
List of frequencies at which the data are provided.
receivers.channels = [30.0, 45.0, 90.0, 180.0, 360.0, 720.0]
Input type#
Generic label used in the geoh5
standard for all EM survey entities. Restricted to Rx and base station
in the case of a tipper survey.
Property groups#
List of PropertyGroups defining the various data components (e.g. Txz (real)
, Tyz (imag)
, …). It is not required to supply all components of the impedence tensor, but it is expected that each component contains a list of data channels of length and in the same order as the Channels
(one Data
per frequency).
The class method add_components_data can help users add data from nested dictionaries. Below is an example using four components:
# Arbitrary data generator using sine functions
def data_fun(c, f):
return (c + 1.0) * (f + 1.0) * np.sin(f * np.pi * (x_loc * y_loc).ravel() / 400.0)
# Create a nested dictionary of component and frequency data.
data = {
component: {
f"{component}_{freq}": {"values": data_fun(cc, ff)}
for ff, freq in enumerate(receivers.channels)
}
for cc, component in enumerate(
[
"Txz (real)",
"Txz (imaginary)",
"Tyz (real)",
"Tyz (imaginary)",
]
)
}
receivers.add_components_data(data)
[<geoh5py.groups.property_group.PropertyGroup at 0x76dda817b7c0>,
<geoh5py.groups.property_group.PropertyGroup at 0x76ddb0513cd0>,
<geoh5py.groups.property_group.PropertyGroup at 0x76dda817b790>,
<geoh5py.groups.property_group.PropertyGroup at 0x76dda80b0310>]
Metadata are updated immediately to reflect the addition of components:
receivers.metadata
{'EM Dataset': {'Base stations': UUID('2068b8ff-4089-43bf-9efe-bc191b8ea92b'),
'Channels': [30.0, 45.0, 90.0, 180.0, 360.0, 720.0],
'Input type': 'Rx and base stations',
'Property groups': ['Txz (real)',
'Txz (imaginary)',
'Tyz (real)',
'Tyz (imaginary)'],
'Receivers': UUID('b90a6eac-aa90-4c8c-b588-71d782222c45'),
'Survey type': 'ZTEM',
'Unit': 'Hertz (Hz)'}}
Data channels associated with each component can be quickly accessed through the BaseEMSurvey.components property:
receivers.components
{'Txz (real)': [<geoh5py.data.float_data.FloatData at 0x76ddb0513d30>,
<geoh5py.data.float_data.FloatData at 0x76dda817b640>,
<geoh5py.data.float_data.FloatData at 0x76ddb0513a90>,
<geoh5py.data.float_data.FloatData at 0x76ddb05115a0>,
<geoh5py.data.float_data.FloatData at 0x76ddb0511450>,
<geoh5py.data.float_data.FloatData at 0x76ddb055e770>],
'Txz (imaginary)': [<geoh5py.data.float_data.FloatData at 0x76dda80b0bb0>,
<geoh5py.data.float_data.FloatData at 0x76dda80b0e50>,
<geoh5py.data.float_data.FloatData at 0x76dda80b0e80>,
<geoh5py.data.float_data.FloatData at 0x76dda80b1000>,
<geoh5py.data.float_data.FloatData at 0x76dda80b10f0>,
<geoh5py.data.float_data.FloatData at 0x76dda80b1210>],
'Tyz (real)': [<geoh5py.data.float_data.FloatData at 0x76dda80b1330>,
<geoh5py.data.float_data.FloatData at 0x76dda80b1f60>,
<geoh5py.data.float_data.FloatData at 0x76dda80b1f90>,
<geoh5py.data.float_data.FloatData at 0x76dda80b2110>,
<geoh5py.data.float_data.FloatData at 0x76dda80b2200>,
<geoh5py.data.float_data.FloatData at 0x76dda80b2320>],
'Tyz (imaginary)': [<geoh5py.data.float_data.FloatData at 0x76dda80b25f0>,
<geoh5py.data.float_data.FloatData at 0x76dda80b0a00>,
<geoh5py.data.float_data.FloatData at 0x76dda80b16f0>,
<geoh5py.data.float_data.FloatData at 0x76dda80b17b0>,
<geoh5py.data.float_data.FloatData at 0x76dda80b1930>,
<geoh5py.data.float_data.FloatData at 0x76dda80b19f0>]}
Receivers#
Generic label used in the geoh5
standard for EM survey to identify the TipperReceivers entity.
Base stations#
Generic label used in the geoh5
standard for EM survey to identify the TipperBaseStations entity.
Survey type#
Label identifier for ZTEM
survey type.
Unit#
Units for frequency sampling of the data: Hertz (Hz)
, KiloHertz (kHz)
, MegaHertz (MHz)
or Gigahertz (GHz)
.
workspace.finalize()