Source code for geoh5py.objects.points

#  Copyright (c) 2024 Mira Geoscience Ltd.
#
#  This file is part of geoh5py.
#
#  geoh5py is free software: you can redistribute it and/or modify
#  it under the terms of the GNU Lesser General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#
#  geoh5py is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU Lesser General Public License for more details.
#
#  You should have received a copy of the GNU Lesser General Public License
#  along with geoh5py.  If not, see <https://www.gnu.org/licenses/>.

from __future__ import annotations

import uuid
import warnings

import numpy as np

from ..data import DataAssociationEnum
from .object_base import ObjectBase


[docs] class Points(ObjectBase): """ Points object made up of vertices. :param vertices: Array of vertices coordinates, shape(n_vertices, 3). """ _default_name = "Points" _TYPE_UID: uuid.UUID | None = uuid.UUID("{202C5DB1-A56D-4004-9CAD-BAAFD8899406}") __VERTICES_DTYPE = np.dtype([("x", "<f8"), ("y", "<f8"), ("z", "<f8")]) _minimum_vertices = 1 def __init__( self, vertices: np.ndarray | list | tuple | None = None, **kwargs, ): self._vertices: np.ndarray = self.validate_vertices(vertices) super().__init__(**kwargs)
[docs] def copy( self, parent=None, *, copy_children: bool = True, clear_cache: bool = False, mask: np.ndarray | None = None, **kwargs, ) -> Points: """ Sub-class extension of :func:`~geoh5py.shared.entity.Entity.copy`. """ if mask is not None and self.vertices is not None: if ( not isinstance(mask, np.ndarray) or mask.shape != (self.n_vertices,) or mask.dtype != bool ): raise ValueError( "Mask must be an array of shape (n_vertices,) and dtype 'bool'." ) kwargs.update({"vertices": self.vertices[mask]}) new_entity = super().copy( parent=parent, copy_children=copy_children, clear_cache=clear_cache, mask=mask, **kwargs, ) return new_entity
@property def n_vertices(self) -> int: """ Number of vertices """ return self.vertices.shape[0]
[docs] def remove_vertices( self, indices: list[int] | np.ndarray, clear_cache: bool = False ): """ Safely remove vertices and corresponding data entries. :param indices: Indices of vertices to remove. :param clear_cache: Clear cached data and attributes. """ if isinstance(indices, list): indices = np.array(indices) if not isinstance(indices, np.ndarray): raise TypeError("Indices must be a list or numpy array.") if np.max(indices) > self.n_vertices - 1: raise ValueError("Found indices larger than the number of vertices.") if (self.n_vertices - len(np.unique(indices))) < self._minimum_vertices: raise ValueError( f"Operation would leave fewer vertices than the " f"minimum permitted of {self._minimum_vertices}." ) vertices = np.delete(self.vertices, indices, axis=0) self.load_children_values() self._vertices = self.validate_vertices(vertices) self._remove_children_values( indices, DataAssociationEnum.VERTEX, clear_cache=clear_cache ) self.workspace.update_attribute(self, "vertices")
@property def vertices(self) -> np.ndarray: """ Array of vertices coordinates, shape(n_vertices, 3). """ if self._vertices is None and self.on_file: self._vertices = self.workspace.fetch_array_attribute(self, "vertices") return self._vertices.view("<f8").reshape((-1, 3)) @vertices.setter def vertices(self, vertices: np.ndarray | list | tuple): xyz = self.validate_vertices(vertices) if self._vertices is not None and self._vertices.shape != xyz.shape: raise ValueError( "New vertices array must have the same shape as the current vertices array." ) self._vertices = xyz self.workspace.update_attribute(self, "vertices")
[docs] @classmethod def validate_vertices(cls, xyz: np.ndarray | list | tuple | None) -> np.ndarray: """ Validate and format type of vertices array. :param xyz: Array of vertices as defined by :obj:`~geoh5py.objects.points.Points.vertices`. """ if xyz is None: warnings.warn( "No 'vertices' provided. Using (0, 0, 0) default point at the origin.", UserWarning, ) xyz = (0.0, 0.0, 0.0) if isinstance(xyz, (list, tuple)): xyz = np.array(xyz, ndmin=2) if not isinstance(xyz, np.ndarray): raise TypeError("Vertices must be a numpy array.") if len(xyz) < cls._minimum_vertices: warnings.warn( f"Attribute 'vertices' has fewer elements than the " f"minimum required for object of type {type(cls)}. " f"Augmenting the array to shape ({cls._minimum_vertices}, 3).", UserWarning, ) xyz = np.vstack([xyz] * cls._minimum_vertices) if np.issubdtype(xyz.dtype, np.number): if xyz.ndim != 2 or xyz.shape[-1] != 3: raise ValueError( "Array of 'vertices' should be of shape (*, 3). " f"Got shape {xyz.shape}." ) xyz = np.asarray( np.core.records.fromarrays( xyz.T.tolist(), dtype=cls.__VERTICES_DTYPE, ) ) if xyz.dtype != np.dtype(cls.__VERTICES_DTYPE): raise ValueError( f"Array of 'vertices' must be of dtype = {cls.__VERTICES_DTYPE}" ) return xyz