Source code for geoh5py.objects.octree

#  Copyright (c) 2024 Mira Geoscience Ltd.
#
#  This file is part of geoh5py.
#
#  geoh5py is free software: you can redistribute it and/or modify
#  it under the terms of the GNU Lesser General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#
#  geoh5py is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU Lesser General Public License for more details.
#
#  You should have received a copy of the GNU Lesser General Public License
#  along with geoh5py.  If not, see <https://www.gnu.org/licenses/>.

from __future__ import annotations

import uuid
from numbers import Real

import numpy as np

from ..shared.utils import xy_rotation_matrix
from .grid_object import GridObject


[docs] class Octree(GridObject): """ Octree mesh class that uses a tree structure such that cells can be subdivided it into eight octants. :param u_count: Number of cells along the u-axis. :param v_count: Number of cells along the v-axis. :param w_count: Number of cells along the w-axis. :param u_cell_size: Base cell size along the u-axis. :param v_cell_size: Base cell size along the v-axis. :param w_cell_size: Base cell size along the w-axis. :param octree_cells: Array defining the i, j, k position and size of each cell. """ _TYPE_UID = uuid.UUID( fields=(0x4EA87376, 0x3ECE, 0x438B, 0xBF, 0x12, 0x3479733DED46) ) __OCTREE_DTYPE = np.dtype( [("I", "<i4"), ("J", "<i4"), ("K", "<i4"), ("NCells", "<i4")] ) _attribute_map: dict = GridObject._attribute_map.copy() _attribute_map.update( { "NU": "u_count", "NV": "v_count", "NW": "w_count", "Origin": "origin", "Rotation": "rotation", "U Cell Size": "u_cell_size", "V Cell Size": "v_cell_size", "W Cell Size": "w_cell_size", } ) def __init__( # pylint: disable=too-many-arguments self, *, u_count: int = 1, v_count: int = 1, w_count: int = 1, u_cell_size: float = 1.0, v_cell_size: float = 1.0, w_cell_size: float = 1.0, octree_cells: np.ndarray | list | tuple | None = None, **kwargs, ): self._u_count = self.validate_octree_count(u_count, "u") self._v_count = self.validate_octree_count(v_count, "v") self._w_count = self.validate_octree_count(w_count, "w") if octree_cells is None: octree_cells = self.base_refine() self._octree_cells: np.ndarray = self.validate_octree_cells(octree_cells) super().__init__( **kwargs, ) self.u_cell_size = u_cell_size self.v_cell_size = v_cell_size self.w_cell_size = w_cell_size
[docs] def base_refine(self) -> np.ndarray: """ Refine the mesh to its base octree level resulting in a single cell along the shortest dimension. """ # Number of octree levels allowed on each dimension level_u = np.log2(self.u_count) level_v = np.log2(self.v_count) level_w = np.log2(self.w_count) min_level = np.min([level_u, level_v, level_w]) # Check that the refine level doesn't exceed the shortest dimension level = np.min([0, min_level]) # Number of additional break to account for variable dimensions add_u = int(level_u - min_level) add_v = int(level_v - min_level) add_w = int(level_w - min_level) j, k, i = np.meshgrid( np.arange(0, self.v_count, 2 ** (level_v - add_v - level)), np.arange(0, self.w_count, 2 ** (level_w - add_w - level)), np.arange(0, self.u_count, 2 ** (level_u - add_u - level)), ) octree_cells = np.c_[ i.flatten(), j.flatten(), k.flatten(), np.ones_like(i.flatten()) * 2 ** (min_level - level), ] return octree_cells
@property def centroids(self) -> np.ndarray: """ Cell center locations in world coordinates of shape (n_cells, 3). .. code-block:: python centroids = [ [x_1, y_1, z_1], ..., [x_N, y_N, z_N] ] """ if getattr(self, "_centroids", None) is None: angle = np.deg2rad(self.rotation) rot = xy_rotation_matrix(angle) u_grid = ( self.octree_cells["I"] + self.octree_cells["NCells"] / 2.0 ) * self.u_cell_size v_grid = ( self.octree_cells["J"] + self.octree_cells["NCells"] / 2.0 ) * self.v_cell_size w_grid = ( self.octree_cells["K"] + self.octree_cells["NCells"] / 2.0 ) * self.w_cell_size xyz = np.c_[u_grid, v_grid, w_grid] self._centroids = np.dot(rot, xyz.T).T for ind, axis in enumerate(["x", "y", "z"]): self._centroids[:, ind] += self.origin[axis] return self._centroids @property def n_cells(self) -> int: """ Total number of cells in the mesh """ return self.octree_cells.shape[0] @property def octree_cells(self) -> np.ndarray: """ Array defining the i, j, k position and size of each cell. The size defines the width of a cell in number of base cells, shape (:obj:`~geoh5py.objects.octree.Octree.n_cells`, 4). .. code-block:: python cells = [ [i_1, j_1, k_1, size_1], ..., [i_N, j_N, k_N, size_N] ] """ if self._octree_cells is None and self.on_file: self._octree_cells = self.workspace.fetch_array_attribute( self, "octree_cells" ) return self._octree_cells @octree_cells.setter def octree_cells(self, octree_cells: np.ndarray | list | tuple): octree_cells = self.validate_octree_cells(octree_cells) if ( self._octree_cells is not None and self._octree_cells.shape != octree_cells.shape ): raise ValueError( "New octree_cells array must have the same shape as the current octree_cells array." ) self._octree_cells = octree_cells self.workspace.update_attribute(self, "octree_cells") @property def shape(self) -> tuple[np.int32, np.int32, np.int32]: """ Number of cells along the u, v and w-axis. """ return self.u_count, self.v_count, self.w_count @property def u_cell_size(self) -> float: """ Base cell size along the u-axis. """ return self._u_cell_size @u_cell_size.setter def u_cell_size(self, value: Real): if not isinstance(value, Real): raise TypeError("Attribute 'u_cell_size' must be type(float).") self._u_cell_size = float(value) @property def u_count(self) -> int: """ Number of cells along u-axis. """ return self._u_count @property def v_cell_size(self) -> float: """ Base cell size along the v-axis. """ return self._v_cell_size @v_cell_size.setter def v_cell_size(self, value: Real): if not isinstance(value, Real): raise TypeError("Attribute 'v_cell_size' must be type(float).") self._v_cell_size = float(value) @property def v_count(self) -> int: """ Number of cells along v-axis. """ return self._v_count @property def cell_volumes(self) -> np.ndarray: """ Returns Octree cell volumes. Calculates nc * u_cell_size * nc * v_cell_size * nc * w_cell_size where nc is the number of base cells making up the octree cell as defined in the octree_cells array. :returns: Array of cell volumes in same order as octree_cells. """ return ( self.octree_cells["NCells"] ** 3 * self.u_cell_size * self.v_cell_size * self.w_cell_size )
[docs] @staticmethod def validate_octree_count(value: int, axis: str) -> np.int32: """ Validate the number of cells along an axis are in power of 2. :param value: Number of cells along the axis. :param axis: Axis name. :return: Number of cells along the axis. """ if not isinstance(value, (np.integer, int)): raise TypeError(f"Attribute '{axis}_count' must be type(int).") if np.log2(value) % 1.0 != 0: raise ValueError( f"Attribute '{axis}_count' must be type(int) in power of 2." ) return np.int32(value)
[docs] @classmethod def validate_octree_cells( cls, array: np.ndarray | list | tuple | None ) -> np.ndarray: """ Validate the octree cell array. :param array: An array or list defining the i, j, k position and size of each cell. :return: A formatted recarray """ if isinstance(array, (list, tuple)): array = np.array(array, ndmin=2) if not isinstance(array, np.ndarray): raise TypeError( "Attribute 'octree_cells' must be a list, tuple or numpy array. " f"Object of type {type(array)} provided." ) if np.issubdtype(array.dtype, np.number): assert ( array.shape[1] == 4 ), "'octree_cells' requires an ndarray of shape (*, 4)" array = np.asarray( np.core.records.fromarrays( array.T.tolist(), dtype=cls.__OCTREE_DTYPE, ) ) if array.dtype != cls.__OCTREE_DTYPE: raise ValueError( f"Array of 'octree_cells' must be of dtype = {cls.__OCTREE_DTYPE}" ) return array
@property def w_cell_size(self) -> float: """ Base cell size along the w-axis. """ return self._w_cell_size @w_cell_size.setter def w_cell_size(self, value: Real): if not isinstance(value, Real): raise TypeError("Attribute 'w_cell_size' must be type(float).") self._w_cell_size = float(value) @property def w_count(self) -> int: """ Number of cells along w-axis. """ return self._w_count