# Copyright (c) 2024 Mira Geoscience Ltd.
#
# This file is part of geoh5py.
#
# geoh5py is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# geoh5py is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with geoh5py. If not, see <https://www.gnu.org/licenses/>.
# pylint: disable=R0902, R0904
from __future__ import annotations
import re
import uuid
import numpy as np
from ..data import Data, FloatData, NumericData
from ..groups import PropertyGroup
from ..shared.utils import box_intersect, mask_by_extent, merge_arrays
from .object_base import ObjectType
from .points import Points
[docs]
class Drillhole(Points):
"""
Drillhole object class defined by
.. warning:: Not yet implemented.
"""
__TYPE_UID = uuid.UUID(
fields=(0x7CAEBF0E, 0xD16E, 0x11E3, 0xBC, 0x69, 0xE4632694AA37)
)
_attribute_map = Points._attribute_map.copy()
_attribute_map.update(
{
"Cost": "cost",
"Collar": "collar",
"Planning": "planning",
"End of hole": "end_of_hole",
}
)
def __init__(self, object_type: ObjectType, **kwargs):
self._cells: np.ndarray | None = None
self._collar: np.ndarray | None = None
self._cost: float | None = 0.0
self._depths: FloatData | None = None
self._end_of_hole: float | None = None
self._planning: str = "Default"
self._surveys: np.ndarray | None = None
self._trace: np.ndarray | None = None
self._trace_depth: np.ndarray | None = None
self._locations = None
self._default_collocation_distance = 1e-2
super().__init__(object_type, **kwargs)
[docs]
@classmethod
def default_type_uid(cls) -> uuid.UUID:
return cls.__TYPE_UID
@property
def cells(self) -> np.ndarray | None:
r"""
:obj:`numpy.ndarray` of :obj:`int`, shape (\*, 2):
Array of indices defining segments connecting vertices.
"""
if getattr(self, "_cells", None) is None:
if self.on_file:
self._cells = self.workspace.fetch_array_attribute(self)
return self._cells
@cells.setter
def cells(self, indices):
assert indices.dtype == "uint32", "Indices array must be of type 'uint32'"
self._cells = indices
self.workspace.update_attribute(self, "cells")
@property
def collar(self):
"""
:obj:`numpy.array` of :obj:`float`, shape (3, ): Coordinates of the collar
"""
return self._collar
@collar.setter
def collar(self, value: list | np.ndarray | None):
if value is not None:
if isinstance(value, np.ndarray):
value = value.tolist()
if isinstance(value, str):
value = [float(n) for n in re.findall(r"-?\d+\.\d+", value)]
if len(value) != 3:
raise ValueError("Origin must be a list or numpy array of len (3,).")
value = np.asarray(
tuple(value), dtype=[("x", float), ("y", float), ("z", float)]
)
self._collar = value
self.workspace.update_attribute(self, "attributes")
self._locations = None
if self.trace is not None:
self._trace = None
self._trace_depth = None
self.workspace.update_attribute(self, "trace")
self.workspace.update_attribute(self, "trace_depth")
@property
def cost(self):
"""
:obj:`float`: Cost estimate of the drillhole
"""
return self._cost
@cost.setter
def cost(self, value: float | int):
assert isinstance(
value, (float, int)
), f"Provided cost value must be of type {float} or int."
self._cost = value
self.workspace.update_attribute(self, "attributes")
@property
def end_of_hole(self) -> float | None:
"""
End of drillhole in meters
"""
return self._end_of_hole
@end_of_hole.setter
def end_of_hole(self, value: float | int | None):
assert isinstance(
value, (int, float, type(None))
), f"Provided end_of_hole value must be of type {int}"
self._end_of_hole = value
self.workspace.update_attribute(self, "attributes")
@property
def extent(self) -> np.ndarray | None:
"""
Geography bounding box of the object.
:return: shape(2, 3) Bounding box defined by the bottom South-West and
top North-East coordinates.
"""
if self.collar is not None:
return (
np.repeat(
np.r_[[self.collar["x"], self.collar["y"], self.collar["z"]]], 2
)
.reshape((-1, 2))
.T
)
return None
@property
def locations(self) -> np.ndarray | None:
"""
Lookup array of the well path in x, y, z coordinates.
"""
if getattr(self, "_locations", None) is None and self.collar is not None:
surveys = np.vstack([self.surveys[0, :], self.surveys])
surveys[0, 0] = 0.0
lengths = surveys[1:, 0] - surveys[:-1, 0]
deviation = compute_deviation(surveys)
self._locations = np.c_[
self.collar["x"] + np.cumsum(np.r_[0.0, lengths * deviation[:, 0]]),
self.collar["y"] + np.cumsum(np.r_[0.0, lengths * deviation[:, 1]]),
self.collar["z"] + np.cumsum(np.r_[0.0, lengths * deviation[:, 2]]),
]
return self._locations
[docs]
def mask_by_extent(
self, extent: np.ndarray, inverse: bool = False
) -> np.ndarray | None:
"""
Sub-class extension of :func:`~geoh5py.shared.entity.Entity.mask_by_extent`.
Uses the collar location only.
"""
if self.extent is None or not box_intersect(self.extent, extent):
return None
if self.collar is not None:
return mask_by_extent(
np.c_[[self.collar["x"], self.collar["y"], self.collar["z"]]].T,
extent,
inverse=inverse,
)
return None
@property
def planning(self) -> str:
"""
Status of the hole on of "Default", "Ongoing", "Planned", "Completed" or "No status"
"""
return self._planning
@planning.setter
def planning(self, value: str):
choices = ["Default", "Ongoing", "Planned", "Completed", "No status"]
assert value in choices, f"Provided planning value must be one of {choices}"
self._planning = value
self.workspace.update_attribute(self, "attributes")
@property
def surveys(self) -> np.ndarray:
"""
Coordinates of the surveys
"""
if (getattr(self, "_surveys", None) is None) and self.on_file:
self._surveys = self.workspace.fetch_array_attribute(self, "surveys")
if isinstance(self._surveys, np.ndarray):
surveys = np.vstack(
[
self._surveys["Depth"],
self._surveys["Azimuth"],
self._surveys["Dip"],
]
).T
else:
surveys = np.c_[0, 0, -90]
return surveys.astype(float)
@surveys.setter
def surveys(self, value):
if value is not None:
value = np.vstack(value)
if value.shape[1] != 3:
raise ValueError("'surveys' requires an ndarray of shape (*, 3)")
self._surveys = np.asarray(
np.core.records.fromarrays(
value.T, names="Depth, Azimuth, Dip", formats="<f4, <f4, <f4"
)
)
self.workspace.update_attribute(self, "surveys")
self.end_of_hole = float(self._surveys["Depth"][-1])
self._trace = None
self.workspace.update_attribute(self, "trace")
self._locations = None
@property
def default_collocation_distance(self):
"""
Minimum collocation distance for matching depth on merge
"""
return self._default_collocation_distance
@default_collocation_distance.setter
def default_collocation_distance(self, tol):
assert tol > 0, "Tolerance value should be >0"
self._default_collocation_distance = tol
self.workspace.update_attribute(self, "attributes")
@property
def trace(self) -> np.ndarray | None:
"""
:obj:`numpy.array`: Drillhole trace defining the path in 3D
"""
if self._trace is None and self.on_file:
self._trace = self.workspace.fetch_array_attribute(self, "trace")
if self._trace is not None:
return self._trace.view("<f8").reshape((-1, 3))
return None
@property
def trace_depth(self) -> np.ndarray | None:
"""
:obj:`numpy.array`: Drillhole trace depth from top to bottom
"""
if getattr(self, "_trace_depth", None) is None and self.trace is not None:
trace = self.trace
self._trace_depth = trace[0, 2] - trace[:, 2]
return self._trace_depth
@property
def from_(self):
"""
Depth data corresponding to the tops of the interval values.
"""
data_obj = self.get_data("FROM")
if data_obj:
return data_obj[0]
return None
@property
def to_(self):
"""
Depth data corresponding to the bottoms of the interval values.
"""
data_obj = self.get_data("TO")
if data_obj:
return data_obj[0]
return None
@property
def depths(self) -> FloatData | None:
if self._depths is None:
data_obj = self.get_data("DEPTH")
if data_obj and isinstance(data_obj[0], FloatData):
self.depths = data_obj[0]
return self._depths
@depths.setter
def depths(self, value: FloatData | np.ndarray | None):
if isinstance(value, np.ndarray):
value = self.workspace.create_entity(
Data,
entity={
"parent": self,
"association": "VERTEX",
"name": "DEPTH",
"values": value,
},
entity_type={"primitive_type": "FLOAT"},
)
if isinstance(value, (FloatData, type(None))):
self._depths = value
else:
raise ValueError(
f"Input '_depth' property must be of type{FloatData} or None"
)
[docs]
def add_data(
self,
data: dict,
property_group: str | PropertyGroup | None = None,
compression: int = 5,
collocation_distance=None,
) -> Data | list[Data]:
"""
Create :obj:`~geoh5py.data.data.Data` specific to the drillhole object
from dictionary of name and arguments. A keyword 'depth' or 'from-to'
with corresponding depth values is expected in order to locate the
data along the well path.
:param data: Dictionary of data to be added to the object, e.g.
.. code-block:: python
data_dict = {
"data_A": {
'values', [v_1, v_2, ...],
"from-to": numpy.ndarray,
},
"data_B": {
'values', [v_1, v_2, ...],
"depth": numpy.ndarray,
},
}
:param property_group: Name or PropertyGroup used to group the data.
:param collocation_distance: Minimum collocation distance for matching
:param compression: Compression level for data.
:return: List of new Data objects.
"""
data_objects = []
for name, attributes in data.items():
assert isinstance(attributes, dict), (
f"Given value to data {name} should of type {dict}. "
f"Type {type(attributes)} given instead."
)
assert (
"values" in attributes
), f"Given attributes for data {name} should include 'values'"
attributes["name"] = name
if attributes["name"] in self.get_data_list():
raise UserWarning(
f"Data with name '{attributes['name']}' already present "
f"on the drillhole '{self.name}'. "
"Consider changing the values or renaming."
)
attributes, new_property_group = self.validate_data(
attributes, property_group, collocation_distance=collocation_distance
)
entity_type = self.validate_data_type(attributes)
kwargs = {
"name": None,
"parent": self,
"association": attributes["association"],
"allow_move": False,
}
for key, val in attributes.items():
if key in ["parent", "association", "entity_type", "type"]:
continue
kwargs[key] = val
data_object = self.workspace.create_entity(
Data, entity=kwargs, entity_type=entity_type, compression=compression
)
if not isinstance(data_object, Data):
continue
if new_property_group is not None:
self.add_data_to_group(data_object, new_property_group)
data_objects.append(data_object)
# Check the depths and re-sort data if necessary
self.sort_depths()
if len(data_objects) == 1:
return data_objects[0]
return data_objects
[docs]
def desurvey(self, depths):
"""
Function to return x, y, z coordinates from depth.
"""
if self.locations is None:
raise AttributeError(
"The 'desurvey' operation requires the 'locations' "
"attribute to be defined."
)
if isinstance(depths, list):
depths = np.asarray(depths)
# Repeat first survey point at surface for de-survey interpolation
surveys = np.vstack([self.surveys[0, :], self.surveys])
surveys[0, 0] = 0.0
ind_loc = np.maximum(
np.searchsorted(surveys[:, 0], depths, side="left") - 1,
0,
)
deviation = compute_deviation(surveys)
ind_dev = np.minimum(ind_loc, deviation.shape[0] - 1)
locations = (
self.locations[ind_loc, :]
+ np.r_[depths - surveys[ind_loc, 0]][:, None]
* np.c_[
deviation[ind_dev, 0],
deviation[ind_dev, 1],
deviation[ind_dev, 2],
]
)
return locations
[docs]
def add_vertices(self, xyz):
"""
Function to add vertices to the drillhole
"""
indices = np.arange(xyz.shape[0])
if isinstance(self.vertices, np.ndarray):
indices += self.vertices.shape[0]
self.vertices = np.vstack([self.vertices, xyz])
else:
self.vertices = xyz
return indices.astype("uint32")
[docs]
def validate_interval_data(
self,
from_to: np.ndarray | list,
values: np.ndarray,
collocation_distance: float = 1e-4,
):
"""
Compare new and current depth values, append new vertices if necessary and return
an augmented values vector that matches the vertices indexing.
"""
if isinstance(from_to, list):
from_to = np.vstack(from_to)
if from_to.shape[0] != len(values):
raise ValueError(
f"Mismatch between input 'from_to' shape{from_to.shape} "
+ f"and 'values' shape{values.shape}"
)
if from_to.ndim != 2 or from_to.shape[1] != 2:
raise ValueError("The `from-to` values must have shape(*, 2).")
if (self.from_ is None) and (self.to_ is None):
uni_depth, inv_map = np.unique(from_to, return_inverse=True)
self.cells = self.add_vertices(self.desurvey(uni_depth))[inv_map].reshape(
(-1, 2)
)
self.workspace.create_entity(
Data,
entity={
"parent": self,
"association": "CELL",
"name": "FROM",
"values": from_to[:, 0],
},
entity_type={"primitive_type": "FLOAT"},
)
self.workspace.create_entity(
Data,
entity={
"parent": self,
"association": "CELL",
"name": "TO",
"values": from_to[:, 1],
},
entity_type={"primitive_type": "FLOAT"},
)
elif self.cells is not None and self.from_ is not None and self.to_ is not None:
out_vec = np.c_[self.from_.values, self.to_.values]
dist_match = []
for i, elem in enumerate(from_to):
ind = np.where(
np.linalg.norm(elem - out_vec, axis=1) < collocation_distance
)[0]
if len(ind) > 0:
dist_match.append([ind[0], i])
cell_map: np.ndarray = np.asarray(dist_match, dtype=int)
# Add vertices
vert_new = np.ones_like(from_to, dtype="bool")
if cell_map.ndim == 2:
vert_new[cell_map[:, 1], :] = False
ind_new = np.where(vert_new.flatten())[0]
uni_new, inv_map = np.unique(
from_to.flatten()[ind_new], return_inverse=True
)
# Append values
values = merge_arrays(
np.ones(self.n_cells) * np.nan,
np.r_[values],
replace="B->A",
mapping=cell_map,
)
self.cells = np.r_[
self.cells,
self.add_vertices(self.desurvey(uni_new))[inv_map]
.reshape((-1, 2))
.astype("uint32"),
]
self.from_.values = merge_arrays(
self.from_.values, from_to[:, 0], mapping=cell_map
)
self.to_.values = merge_arrays(
self.to_.values, from_to[:, 1], mapping=cell_map
)
return values
[docs]
def validate_log_data(
self,
depth: np.ndarray,
input_values: np.ndarray,
collocation_distance=1e-4,
) -> np.ndarray:
"""
Compare new and current depth values. Append new vertices if necessary and return
an augmented values vector that matches the vertices indexing.
"""
if depth.shape != input_values.shape:
raise ValueError(
f"Mismatch between input 'depth' shape{depth.shape} "
+ f"and 'values' shape{input_values.shape}"
)
input_values = np.r_[input_values]
if self.depths is None:
self.add_vertices(self.desurvey(depth))
self.depths = np.r_[
np.ones(self.n_vertices - depth.shape[0]) * np.nan, depth
]
values = np.r_[
np.ones(self.n_vertices - input_values.shape[0]) * np.nan, input_values
]
else:
depths, indices = merge_arrays(
self.depths.values,
depth,
return_mapping=True,
collocation_distance=collocation_distance,
)
values = merge_arrays(
np.ones(self.n_vertices) * np.nan,
input_values,
replace="B->A",
mapping=indices,
)
self.add_vertices(self.desurvey(np.delete(depth, indices[:, 1])))
self.depths.values = depths
return values
[docs]
def validate_data(
self, attributes: dict, property_group=None, collocation_distance=None
) -> tuple:
"""
Validate input drillhole data attributes.
:param attributes: Dictionary of data attributes.
:param property_group: Input property group to validate against.
"""
if collocation_distance is None:
collocation_distance = attributes.get(
"collocation_distance", self.default_collocation_distance
)
if collocation_distance < 0:
raise UserWarning("Input depth 'collocation_distance' must be >0.")
if "depth" not in attributes and "from-to" not in attributes:
if "association" not in attributes or attributes["association"] != "OBJECT":
raise ValueError(
"Input data dictionary must contain {key:values} "
+ "{'from-to':numpy.ndarray} "
+ "or {'association': 'OBJECT'}."
)
if "depth" in attributes.keys():
attributes["association"] = "VERTEX"
attributes["values"] = self.validate_log_data(
attributes["depth"],
attributes["values"],
collocation_distance=collocation_distance,
)
del attributes["depth"]
if "from-to" in attributes.keys():
attributes["association"] = "CELL"
attributes["values"] = self.validate_interval_data(
attributes["from-to"],
attributes["values"],
collocation_distance=collocation_distance,
)
del attributes["from-to"]
return attributes, property_group
[docs]
def sort_depths(self):
"""
Read the 'DEPTH' data and sort all Data.values if needed
"""
if self.get_data("DEPTH"):
data_obj = self.get_data("DEPTH")[0]
depths = data_obj.values
if isinstance(data_obj, NumericData):
depths = data_obj.format_values(depths)
if not np.all(np.diff(depths) >= 0):
sort_ind = np.argsort(depths)
for child in self.children:
if (
isinstance(child, NumericData)
and getattr(child.association, "name", None) == "VERTEX"
):
child.values = child.format_values(child.values)[sort_ind]
if self.vertices is not None:
self.vertices = self.vertices[sort_ind, :]
if self.cells is not None:
key_map = np.argsort(sort_ind)[self.cells.flatten()]
self.cells = key_map.reshape((-1, 2)).astype("uint32")
[docs]
def compute_deviation(surveys: np.ndarray) -> np.ndarray:
"""
Compute deviation distances from survey parameters.
:param surveys: Array of azimuth, dip and depth values.
"""
if surveys is None:
raise AttributeError(
"Cannot compute deviation coordinates without `survey` attribute."
)
lengths = surveys[1:, 0] - surveys[:-1, 0]
deviation = []
for component in [deviation_x, deviation_y, deviation_z]:
dl_in = component(surveys[:-1, 1], surveys[:-1, 2])
dl_out = component(surveys[1:, 1], surveys[1:, 2])
ddl = np.divide(dl_out - dl_in, lengths, where=lengths != 0)
deviation += [dl_in + lengths * ddl / 2.0]
return np.vstack(deviation).T
[docs]
def deviation_x(azimuth, dip):
"""
Compute the easting deviation.
:param azimuth: Degree angle clockwise from North
:param dip: Degree angle positive down from horizontal
:return deviation: Change in easting distance.
"""
return np.cos(np.deg2rad(450.0 - azimuth % 360.0)) * np.cos(np.deg2rad(dip))
[docs]
def deviation_y(azimuth, dip):
"""
Compute the northing deviation.
:param azimuth: Degree angle clockwise from North
:param dip: Degree angle positive down from horizontal
:return deviation: Change in northing distance.
"""
return np.sin(np.deg2rad(450.0 - azimuth % 360.0)) * np.cos(np.deg2rad(dip))
[docs]
def deviation_z(_, dip):
"""
Compute the vertical deviation.
:param dip: Degree angle positive down from horizontal
:return deviation: Change in vertical distance.
"""
return np.sin(np.deg2rad(dip))