# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
# Copyright (c) 2025 Mira Geoscience Ltd. '
# '
# This file is part of geoh5py. '
# '
# geoh5py is free software: you can redistribute it and/or modify '
# it under the terms of the GNU Lesser General Public License as published by '
# the Free Software Foundation, either version 3 of the License, or '
# (at your option) any later version. '
# '
# geoh5py is distributed in the hope that it will be useful, '
# but WITHOUT ANY WARRANTY; without even the implied warranty of '
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the '
# GNU Lesser General Public License for more details. '
# '
# You should have received a copy of the GNU Lesser General Public License '
# along with geoh5py. If not, see <https://www.gnu.org/licenses/>. '
# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
from __future__ import annotations
from typing import TYPE_CHECKING
from uuid import UUID
import numpy as np
from PIL import Image
from ... import objects
from ...data import Data
from ...shared import FLOAT_NDV
from ...shared.utils import PILLOW_ARGUMENTS, xy_rotation_matrix, yz_rotation_matrix
from .base import CellObjectConversion
if TYPE_CHECKING:
from ...objects import GeoImage, Grid2D
[docs]
class Grid2DConversion(CellObjectConversion):
"""
Convert a :obj:'geoh5py.objects.grid2d.Grid2D' object
to a georeferenced :obj:'geoh5py.objects.geo_image.GeoImage' object.
"""
# convert to geoimage
[docs]
@staticmethod
def grid_to_tag(input_entity: Grid2D) -> dict:
"""
Compute the tag dictionary of the :obj:'geoh5py.objects.geo_image.Grid2D'
as required by the :obj:'geoh5py.objects.geo_image.GeoImage' object.
:param input_entity: the Grid2D object to convert.
:return tag: the tag dictionary.
"""
if not isinstance(input_entity.origin, np.ndarray):
raise AttributeError("The Grid2D has no origin.")
if input_entity.v_cell_size is None or input_entity.u_cell_size is None:
raise AttributeError("The Grid2D has no cell size information.")
if input_entity.u_count is None or input_entity.v_count is None:
raise AttributeError("The Grid2D has no number of cells.")
u_origin, v_origin, z_origin = input_entity.origin.tolist()
v_oposite = v_origin + input_entity.v_cell_size * input_entity.v_count
tag = {
256: (input_entity.u_count,),
257: (input_entity.v_count,),
33550: (
input_entity.u_cell_size,
input_entity.v_cell_size,
0.0,
),
33922: (
0.0,
0.0,
0.0,
u_origin,
v_oposite,
z_origin,
),
}
return tag
[docs]
@staticmethod
def key_to_data(input_entity: Grid2D, key: str | int | UUID | Data) -> np.ndarray:
"""
Extract the data from the entity in :obj:'np.array' format;
The data can be of type: ':obj:str', ':obj:int', ':obj:UUID', or ':obj:Data'.
:param input_entity: the Grid2D object to convert.
:param key: the key of the data to extract.
:return: an np. array containing the data.
"""
# get the values
if isinstance(key, str):
data = input_entity.get_data(key)
elif isinstance(key, int):
if key > len(input_entity.get_entity_list()):
raise IndexError(
"'int' values pass as key can't be larger than number of data,",
f"data number: {len(input_entity.get_entity_list())}, key: {key}",
)
key_ = input_entity.get_entity_list()[key]
data = input_entity.get_entity(key_) # type: ignore
elif isinstance(key, UUID):
data = input_entity.get_entity(key) # type: ignore
elif isinstance(key, Data):
data = key # type: ignore
else:
raise TypeError(
"The dtype of the keys must be :",
"'str', 'int', 'Data', 'UUID',",
f"but you entered a {type(key)}",
)
# verify if data exists
if isinstance(data, list):
if len(data) != 1:
raise KeyError(
f"The key '{key}' you entered does not exists;"
f"Valid keys are: {input_entity.get_data_list()}."
)
data = data[0] # type: ignore
return data.values # type: ignore
[docs]
@staticmethod
def data_from_keys(
input_entity: Grid2D,
keys: list | str | int | UUID | Data,
normalize: bool = True,
) -> np.ndarray:
"""
Take a list of (or a unique) key to extract from the object,
and create a :obj:'np.array' with those data.
:param input_entity: the Grid2D object to convert.
:param normalize: if True, the data will be normalized between 0 and 255.
:param keys: the list of the data to extract.
:return data: the data extracted from the object.
"""
# if unique key transform to list
if isinstance(keys, (str, int, UUID, Data)):
keys = [keys]
# prepare the image
if isinstance(keys, list):
data = np.empty((input_entity.v_count, input_entity.u_count, 0)).astype(
np.uint8
)
for key in keys:
data_temp = Grid2DConversion.key_to_data(input_entity, key)
data_temp = Grid2DConversion.data_to_pil_format(
input_entity, data_temp, normalize
)
data = np.dstack((data, data_temp))
return data
raise TypeError(
"The keys must be pass as a list",
f"but you entered a {type(keys)} ",
)
[docs]
@staticmethod
def convert_to_pillow(data: np.ndarray, mode: str | None = None) -> Image:
"""
Convert the data from :obj:'np.array' to :obj:'PIL.Image' format.
"""
if not isinstance(data, np.ndarray):
raise AttributeError("No data is selected.")
if mode is None:
if data.shape[-1] == 1:
mode = "L"
data = data[:, :, 0]
if data.shape[-1] == 3:
mode = "RGB"
elif data.shape[-1] == 4:
mode = "RGBA"
if mode is None:
raise IndexError("Only 1, 3, or 4 layers can be selected")
if mode not in PILLOW_ARGUMENTS:
raise NotImplementedError(f"The mode {mode} is not actually supported.")
return Image.fromarray(data, mode=mode)
[docs]
@staticmethod
def compute_vertices(input_entity: Grid2D) -> np.ndarray:
"""
Compute the vertices of the geoimage to create based on the
properties of the grid and its angle.
:param input_entity: The grid2D object to convert.
:return: A numpy array of 4 points in x,y,z.
"""
# get the length of the x and y axis
if (
input_entity.u_count is None
or input_entity.v_count is None
or input_entity.u_cell_size is None
or input_entity.v_cell_size is None
):
raise AttributeError(
"The grid2D object must have the following properties"
": u_count, v_count, u_cell_size, v_cell_size"
)
length_u = input_entity.u_count * input_entity.u_cell_size
length_v = input_entity.v_count * input_entity.v_cell_size
# Define the corners
corners = np.array(
[[0, length_v, 0], [length_u, length_v, 0], [length_u, 0, 0], [0, 0, 0]]
)
# rotate by the dip
dip_matrix = yz_rotation_matrix(np.deg2rad(input_entity.dip))
dipped_corners = dip_matrix @ corners.T
# rotate by the rotation
rotation_matrix = xy_rotation_matrix(np.deg2rad(input_entity.rotation))
rotated_corners = rotation_matrix @ dipped_corners
# add the origin
shifted_corners = rotated_corners.T + np.array(input_entity.origin.tolist())
return shifted_corners
[docs]
@staticmethod
def to_geoimage(
input_entity: Grid2D,
keys: list | str | int | UUID | Data,
mode: str | None = None,
normalize: bool = True,
**geoimage_kwargs,
) -> GeoImage:
"""
Convert the object to a :obj:'GeoImage' object.
:param input_entity: the Grid2D object to convert.
:param keys: the data to extract.
:param mode: the mode of the image to create.
:param normalize: if True, the data will be normalized between 0 and 255.
:param geoimage_kwargs: the kwargs to pass to the :obj:'GeoImage' object.
"""
workspace, geoimage_kwargs = Grid2DConversion.validate_workspace(
input_entity, **geoimage_kwargs
)
geoimage_kwargs = Grid2DConversion.verify_kwargs(
input_entity, **geoimage_kwargs
)
# get the tag of the data
geoimage_kwargs["tag"] = Grid2DConversion.grid_to_tag(input_entity)
# get the data
data = Grid2DConversion.data_from_keys(input_entity, keys, normalize=normalize)
# define the image
geoimage_kwargs["image"] = Grid2DConversion.convert_to_pillow(data, mode=mode)
# define the vertices
geoimage_kwargs["vertices"] = Grid2DConversion.compute_vertices(input_entity)
# create a geoimage
output = objects.GeoImage.create(workspace, **geoimage_kwargs)
return output