Source code for geoh5py.shared.concatenation.drillhole

# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
#  Copyright (c) 2025 Mira Geoscience Ltd.                                     '
#                                                                              '
#  This file is part of geoh5py.                                               '
#                                                                              '
#  geoh5py is free software: you can redistribute it and/or modify             '
#  it under the terms of the GNU Lesser General Public License as published by '
#  the Free Software Foundation, either version 3 of the License, or           '
#  (at your option) any later version.                                         '
#                                                                              '
#  geoh5py is distributed in the hope that it will be useful,                  '
#  but WITHOUT ANY WARRANTY; without even the implied warranty of              '
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the               '
#  GNU Lesser General Public License for more details.                         '
#                                                                              '
#  You should have received a copy of the GNU Lesser General Public License    '
#  along with geoh5py.  If not, see <https://www.gnu.org/licenses/>.           '
# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''


# pylint: disable=too-many-ancestors

from __future__ import annotations

import numpy as np
from h5py import special_dtype

from ...data import Data
from ...objects import Drillhole
from .object import ConcatenatedObject
from .property_group import ConcatenatedPropertyGroup


[docs] class ConcatenatedDrillhole(ConcatenatedObject, Drillhole): def _update_attribute_from_property_group( self, attributes: dict, property_group: ConcatenatedPropertyGroup | str, ) -> tuple[dict, ConcatenatedPropertyGroup]: """ Update the input attributes with the depth or from-to values from the property group. :param attributes: The attributes to update. :param property_group: the property group to use for the update. :return: The updated attributes and the property group. """ if isinstance(property_group, str): property_group = self.get_property_group(property_group)[0] # type: ignore if not isinstance(property_group, ConcatenatedPropertyGroup): raise AttributeError( "Input data dictionary must contain a key/value pair of depth data " "or contain an 'OBJECT' association. Valid depth keys are 'depth' " "and 'from-to'." ) if property_group.property_group_type == "Depth table": attributes["depth"] = property_group.depth_.values elif property_group.property_group_type == "Interval table": attributes["from-to"] = np.c_[ property_group.from_.values, property_group.to_.values ] else: raise AttributeError( "Input data property group must be of type 'Depth table' or 'Interval table'" ) return attributes, property_group @property def depth_(self) -> list[Data]: obj_list = [] for prop_group in ( self.property_groups if self.property_groups is not None else [] ): properties = [] if prop_group.properties is None else prop_group.properties data = [self.get_data(child)[0] for child in properties] if data and "depth" in data[0].name.lower(): obj_list.append(data[0]) return obj_list @property def from_(self) -> list[Data]: """ Depth data corresponding to the tops of the interval values. """ obj_list = [] for prop_group in ( self.property_groups if self.property_groups is not None else [] ): properties = [] if prop_group.properties is None else prop_group.properties data = [self.get_data(child)[0] for child in properties] if len(data) > 0 and "from" in data[0].name.lower(): obj_list.append(data[0]) return obj_list @property def to_(self) -> list[Data]: """ Depth data corresponding to the bottoms of the interval values. """ obj_list = [] for prop_group in ( self.property_groups if self.property_groups is not None else [] ): data = [self.get_data(child)[0] for child in prop_group.properties] if len(data) > 1 and "to" in data[1].name.lower(): obj_list.append(data[1]) return obj_list
[docs] def validate_association( self, attributes: dict, property_group=None, collocation_distance=None, **_ ) -> tuple: """ Validate input drillhole data attributes. :param attributes: Dictionary of data attributes. :param property_group: Input property group to validate against. :param collocation_distance: Threshold on the comparison between existing depth values. """ if collocation_distance is None: collocation_distance = attributes.get( "collocation_distance", self.default_collocation_distance ) if attributes["name"] in self.get_data_list(): raise ValueError( f"Data with name '{attributes['name']}' already present " f"on the drillhole '{self.name}'. " "Consider changing the values or renaming." ) if collocation_distance < 0: raise UserWarning("Input depth 'collocation_distance' must be >0.") if ( "depth" not in attributes and "from-to" not in attributes and "association" not in attributes ): attributes, property_group = self._update_attribute_from_property_group( attributes, property_group ) # set a specific nan value if text if attributes.get("type") == "TEXT": nan_value = "" else: nan_value = np.nan if "depth" in attributes.keys(): values = attributes.get("values") attributes["association"] = "DEPTH" property_group = self.validate_depth_data( attributes.get("depth"), values, property_group=property_group, collocation_distance=collocation_distance, ) if ( isinstance(values, np.ndarray) and values.shape[0] < property_group.depth_.values.shape[0] ): attributes["values"] = np.pad( values, (0, property_group.depth_.values.shape[0] - len(values)), constant_values=nan_value, ) del attributes["depth"] if "from-to" in attributes.keys(): values = attributes.get("values") attributes["association"] = "DEPTH" property_group = self.validate_interval_data( attributes.get("from-to"), values, property_group=property_group, collocation_distance=collocation_distance, ) if ( isinstance(values, np.ndarray) and values.shape[0] < property_group.from_.values.shape[0] ): attributes["values"] = np.pad( values, (0, property_group.from_.values.shape[0] - len(values)), constant_values=nan_value, ) del attributes["from-to"] return attributes, property_group
[docs] def validate_depth_data( self, depth: list | np.ndarray | None, values: np.ndarray, collocation_distance: float | None = None, property_group: str | ConcatenatedPropertyGroup | None = None, ) -> ConcatenatedPropertyGroup: """ Compare new and current depth values and reuse the property group if possible. :param depth: Sampling depths. :param values: Data samples to depths. :param collocation_distance: Threshold on the comparison between existing depth values. :param property_group: Group for possibly collocated data. :return: Augmented property group with name/values added for collocated data otherwise newly created property group with name/depth/values added. """ if depth is not None: if isinstance(depth, list): depth = np.vstack(depth) if len(depth) < len(values): msg = f"Mismatch between input 'depth' shape{depth.shape} " msg += f"and 'values' shape{values.shape}" raise ValueError(msg) if depth is not None and self.property_groups is not None: for group in self.property_groups: if ( group.depth_ is not None and group.depth_.values.shape[0] == depth.shape[0] and np.allclose( group.depth_.values, depth, atol=collocation_distance ) ): if isinstance(property_group, str) and group.name != property_group: continue return group ind = 0 label = "" if len(self.depth_) > 0: ind = len(self.depth_) label = f"({ind})" if property_group is None: property_group = f"depth_{ind}" if isinstance(property_group, str): out_group: ConcatenatedPropertyGroup = self.fetch_property_group( # type: ignore name=property_group, association="DEPTH", property_group_type="Depth table", ) if out_group.depth_ is not None: if out_group.depth_.values.shape[0] != values.shape[0]: raise ValueError( f"Input values with shape({values.shape[0]}) " f"do not match the from-to intervals of the group '{out_group}' " f"with shape({out_group.depth_.values.shape[0]}). Check values or " f"assign to a new property group." ) return out_group else: out_group = property_group self.add_data( { f"DEPTH{label}": { "association": "DEPTH", "values": depth, "primitive_type": "FLOAT", "parent": self, "allow_move": False, "allow_delete": False, }, }, out_group, ) return out_group
[docs] def validate_interval_data( self, from_to: list | np.ndarray | None, values: np.ndarray, collocation_distance=1e-4, property_group: str | ConcatenatedPropertyGroup | None = None, ) -> ConcatenatedPropertyGroup: """ Compare new and current depth values and reuse the property group if possible. Otherwise a new property group is added. :param from_to: Array of from-to values. :param values: Data values to be added on the from-to intervals. :param collocation_distance: Threshold on the comparison between existing depth values. :param property_group: Property group name. :return A ConcatenatedPropertyGroup with the matched values. """ if from_to is not None: if isinstance(from_to, list): from_to = np.vstack(from_to) if from_to.shape[0] == 2: from_to = from_to.T assert from_to.shape[0] >= len(values), ( f"Mismatch between input 'from_to' shape{from_to.shape} " + f"and 'values' shape{values.shape}" ) assert from_to.shape[1] == 2, "The `from-to` values must have shape(*, 2)" if ( from_to is not None and property_group is None and self.property_groups is not None ): for p_g in self.property_groups: if ( isinstance(p_g.from_, Data) and p_g.from_.values.shape[0] == from_to.shape[0] and np.allclose( np.c_[p_g.from_.values, p_g.to_.values], from_to, atol=collocation_distance, ) ): return p_g ind = 0 label = "" if len(self.from_) > 0: ind = len( list(set(self.from_)) ) # todo: from_ return the same value x time why? label = f"({ind})" if property_group is None: property_group = f"Interval_{ind}" if isinstance(property_group, str): out_group: ConcatenatedPropertyGroup = self.fetch_property_group( # type: ignore name=property_group, association="DEPTH", property_group_type="Interval table", ) else: out_group = property_group if out_group.from_ is not None: if out_group.from_.values.shape[0] != values.shape[0]: raise ValueError( f"Input values with shape({values.shape[0]}) " f"do not match the from-to intervals of the group '{out_group}' " f"with shape({out_group.from_.values.shape[0]}). Check values or " f"assign to a new property group." ) return out_group self.add_data( { f"FROM{label}": { "association": "DEPTH", "values": from_to[:, 0], "primitive_type": "FLOAT", "parent": self, "allow_move": False, "allow_delete": False, }, f"TO{label}": { "association": "DEPTH", "values": from_to[:, 1], "primitive_type": "FLOAT", "parent": self, "allow_move": False, "allow_delete": False, }, }, out_group, ) return out_group
[docs] def post_processing(self): """Bypass sort_depths from previous version."""
[docs] def format_survey_values(self, values: list | np.ndarray) -> np.recarray: """ Reformat the survey values as structured array with the right shape. """ if isinstance(values, (list, tuple)): values = np.array(values, ndmin=2) if isinstance(values, np.ndarray): values = values.T.tolist() dtype = [("Depth", "<f4"), ("Azimuth", "<f4"), ("Dip", "<f4")] if ( "Surveys" in self.concatenator.data and len(self.concatenator.data["Surveys"].dtype) == 4 ): dtype = self.concatenator.data["Surveys"].dtype if len(values) not in [3, 4]: raise ValueError("'surveys' requires an ndarray of shape (*, 3) or (*, 4)") if len(values) == 3 and len(dtype) == 4: values += [np.array([b""] * len(values[0]), dtype=special_dtype(vlen=str))] elif len(values) == 4 and len(dtype) == 3: values = values[:-1] array_values = np.core.records.fromarrays(values, dtype=dtype) return array_values