# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
# Copyright (c) 2025 Mira Geoscience Ltd. '
# '
# This file is part of geoh5py. '
# '
# geoh5py is free software: you can redistribute it and/or modify '
# it under the terms of the GNU Lesser General Public License as published by '
# the Free Software Foundation, either version 3 of the License, or '
# (at your option) any later version. '
# '
# geoh5py is distributed in the hope that it will be useful, '
# but WITHOUT ANY WARRANTY; without even the implied warranty of '
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the '
# GNU Lesser General Public License for more details. '
# '
# You should have received a copy of the GNU Lesser General Public License '
# along with geoh5py. If not, see <https://www.gnu.org/licenses/>. '
# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
from __future__ import annotations
import uuid
from numbers import Real
import numpy as np
from ..shared.utils import xy_rotation_matrix
from .grid_object import GridObject
[docs]
class Octree(GridObject):
"""
Octree mesh class that uses a tree structure such that cells
can be subdivided it into eight octants.
:param u_count: Number of cells along the u-axis.
:param v_count: Number of cells along the v-axis.
:param w_count: Number of cells along the w-axis.
:param u_cell_size: Base cell size along the u-axis.
:param v_cell_size: Base cell size along the v-axis.
:param w_cell_size: Base cell size along the w-axis.
:param octree_cells: Array defining the i, j, k position and size of each cell.
"""
_TYPE_UID = uuid.UUID(
fields=(0x4EA87376, 0x3ECE, 0x438B, 0xBF, 0x12, 0x3479733DED46)
)
__OCTREE_DTYPE = np.dtype(
[("I", "<i4"), ("J", "<i4"), ("K", "<i4"), ("NCells", "<i4")]
)
_attribute_map: dict = GridObject._attribute_map.copy()
_attribute_map.update(
{
"NU": "u_count",
"NV": "v_count",
"NW": "w_count",
"Origin": "origin",
"Rotation": "rotation",
"U Cell Size": "u_cell_size",
"V Cell Size": "v_cell_size",
"W Cell Size": "w_cell_size",
}
)
def __init__( # pylint: disable=too-many-arguments
self,
*,
u_count: int = 1,
v_count: int = 1,
w_count: int = 1,
u_cell_size: float = 1.0,
v_cell_size: float = 1.0,
w_cell_size: float = 1.0,
octree_cells: np.ndarray | list | tuple | None = None,
**kwargs,
):
self._u_count = self.validate_octree_count(u_count, "u")
self._v_count = self.validate_octree_count(v_count, "v")
self._w_count = self.validate_octree_count(w_count, "w")
if octree_cells is None:
octree_cells = self.base_refine()
self._octree_cells: np.ndarray = self.validate_octree_cells(octree_cells)
super().__init__(
**kwargs,
)
self.u_cell_size = u_cell_size
self.v_cell_size = v_cell_size
self.w_cell_size = w_cell_size
[docs]
def base_refine(self) -> np.ndarray:
"""
Refine the mesh to its base octree level resulting in a
single cell along the shortest dimension.
"""
# Number of octree levels allowed on each dimension
level_u = np.log2(self.u_count)
level_v = np.log2(self.v_count)
level_w = np.log2(self.w_count)
min_level = np.min([level_u, level_v, level_w])
# Check that the refine level doesn't exceed the shortest dimension
level = np.min([0, min_level])
# Number of additional break to account for variable dimensions
add_u = int(level_u - min_level)
add_v = int(level_v - min_level)
add_w = int(level_w - min_level)
j, k, i = np.meshgrid(
np.arange(0, self.v_count, 2 ** (level_v - add_v - level)),
np.arange(0, self.w_count, 2 ** (level_w - add_w - level)),
np.arange(0, self.u_count, 2 ** (level_u - add_u - level)),
)
octree_cells = np.c_[
i.flatten(),
j.flatten(),
k.flatten(),
np.ones_like(i.flatten()) * 2 ** (min_level - level),
]
return octree_cells
@property
def centroids(self) -> np.ndarray:
"""
Cell center locations in world coordinates of shape (n_cells, 3).
.. code-block:: python
centroids = [
[x_1, y_1, z_1],
...,
[x_N, y_N, z_N]
]
"""
if getattr(self, "_centroids", None) is None:
angle = np.deg2rad(self.rotation)
rot = xy_rotation_matrix(angle)
u_grid = (
self.octree_cells["I"] + self.octree_cells["NCells"] / 2.0
) * self.u_cell_size
v_grid = (
self.octree_cells["J"] + self.octree_cells["NCells"] / 2.0
) * self.v_cell_size
w_grid = (
self.octree_cells["K"] + self.octree_cells["NCells"] / 2.0
) * self.w_cell_size
xyz = np.c_[u_grid, v_grid, w_grid]
self._centroids = np.dot(rot, xyz.T).T
for ind, axis in enumerate(["x", "y", "z"]):
self._centroids[:, ind] += self.origin[axis]
return self._centroids
@property
def n_cells(self) -> int:
"""
Total number of cells in the mesh
"""
return self.octree_cells.shape[0]
@property
def octree_cells(self) -> np.ndarray:
"""
Array defining the i, j, k position and size of each cell.
The size defines the width of a cell in number of base cells,
shape (:obj:`~geoh5py.objects.octree.Octree.n_cells`, 4).
.. code-block:: python
cells = [
[i_1, j_1, k_1, size_1],
...,
[i_N, j_N, k_N, size_N]
]
"""
if self._octree_cells is None and self.on_file:
self._octree_cells = self.workspace.fetch_array_attribute(
self, "octree_cells"
)
return self._octree_cells
@octree_cells.setter
def octree_cells(self, octree_cells: np.ndarray | list | tuple):
octree_cells = self.validate_octree_cells(octree_cells)
if (
self._octree_cells is not None
and self._octree_cells.shape != octree_cells.shape
):
raise ValueError(
"New octree_cells array must have the same shape as the current octree_cells array."
)
self._octree_cells = octree_cells
self.workspace.update_attribute(self, "octree_cells")
@property
def shape(self) -> tuple[np.int32, np.int32, np.int32]:
"""
Number of cells along the u, v and w-axis.
"""
return self.u_count, self.v_count, self.w_count
@property
def u_cell_size(self) -> float:
"""
Base cell size along the u-axis.
"""
return self._u_cell_size
@u_cell_size.setter
def u_cell_size(self, value: Real):
if not isinstance(value, Real):
raise TypeError("Attribute 'u_cell_size' must be type(float).")
self._u_cell_size = float(value)
@property
def u_count(self) -> int:
"""
Number of cells along u-axis.
"""
return self._u_count
@property
def v_cell_size(self) -> float:
"""
Base cell size along the v-axis.
"""
return self._v_cell_size
@v_cell_size.setter
def v_cell_size(self, value: Real):
if not isinstance(value, Real):
raise TypeError("Attribute 'v_cell_size' must be type(float).")
self._v_cell_size = float(value)
@property
def v_count(self) -> int:
"""
Number of cells along v-axis.
"""
return self._v_count
[docs]
@staticmethod
def validate_octree_count(value: int, axis: str) -> np.int32:
"""
Validate the number of cells along an axis are in power of 2.
:param value: Number of cells along the axis.
:param axis: Axis name.
:return: Number of cells along the axis.
"""
if not isinstance(value, (np.integer, int)):
raise TypeError(f"Attribute '{axis}_count' must be type(int).")
if np.log2(value) % 1.0 != 0:
raise ValueError(
f"Attribute '{axis}_count' must be type(int) in power of 2."
)
return np.int32(value)
[docs]
@classmethod
def validate_octree_cells(
cls, array: np.ndarray | list | tuple | None
) -> np.ndarray:
"""
Validate the octree cell array.
:param array: An array or list defining the i, j, k position
and size of each cell.
:return: A formatted recarray
"""
if isinstance(array, (list, tuple)):
array = np.array(array, ndmin=2)
if not isinstance(array, np.ndarray):
raise TypeError(
"Attribute 'octree_cells' must be a list, tuple or numpy array. "
f"Object of type {type(array)} provided."
)
if np.issubdtype(array.dtype, np.number):
assert (
array.shape[1] == 4
), "'octree_cells' requires an ndarray of shape (*, 4)"
array = np.asarray(
np.core.records.fromarrays(
array.T.tolist(),
dtype=cls.__OCTREE_DTYPE,
)
)
if array.dtype != cls.__OCTREE_DTYPE:
raise ValueError(
f"Array of 'octree_cells' must be of dtype = {cls.__OCTREE_DTYPE}"
)
return array
@property
def w_cell_size(self) -> float:
"""
Base cell size along the w-axis.
"""
return self._w_cell_size
@w_cell_size.setter
def w_cell_size(self, value: Real):
if not isinstance(value, Real):
raise TypeError("Attribute 'w_cell_size' must be type(float).")
self._w_cell_size = float(value)
@property
def w_count(self) -> int:
"""
Number of cells along w-axis.
"""
return self._w_count