Source code for geoh5py.objects.geo_image

# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
#  Copyright (c) 2025 Mira Geoscience Ltd.                                     '
#                                                                              '
#  This file is part of geoh5py.                                               '
#                                                                              '
#  geoh5py is free software: you can redistribute it and/or modify             '
#  it under the terms of the GNU Lesser General Public License as published by '
#  the Free Software Foundation, either version 3 of the License, or           '
#  (at your option) any later version.                                         '
#                                                                              '
#  geoh5py is distributed in the hope that it will be useful,                  '
#  but WITHOUT ANY WARRANTY; without even the implied warranty of              '
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the               '
#  GNU Lesser General Public License for more details.                         '
#                                                                              '
#  You should have received a copy of the GNU Lesser General Public License    '
#  along with geoh5py.  If not, see <https://www.gnu.org/licenses/>.           '
# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

from __future__ import annotations

import uuid
import warnings
from io import BytesIO
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import TYPE_CHECKING, Any

import numpy as np
from PIL import Image
from PIL.TiffImagePlugin import TiffImageFile

from ..data import FilenameData
from ..shared.conversion import GeoImageConversion
from ..shared.utils import (
    PILLOW_ARGUMENTS,
    box_intersect,
    dip_points,
    xy_rotation_matrix,
)
from .object_base import ObjectBase


if TYPE_CHECKING:
    from ..objects import Grid2D


[docs] class GeoImage(ObjectBase): # pylint: disable=too-many-public-methods """ Image object class. The GeoImage object position is defined by the four corner vertices. The values displayed in the image are stored in a separate entity, called 'GeoImageMesh_Image', and stored as 'GeoImage.image_data' attribute. The image values themselves can be accessed through the 'GeoImage.image' attribute. The 'image' data can be set with: - A File on disk - An array of values defining the pixels of the image - A 2D array of values will create a grayscale image. - A 3D array of values will create an RGB image - A PIL.Image object Setting the 'image' property will create a 'GeoImageMesh_Image' entity and remove the previous one. :param cells: Array of indices defining segments connecting vertices. :param dip: Dip of the image in degrees from the vertices position. :param image: Image data as a numpy array, PIL.Image, bytes, or path to an image file. :param rotation: Rotation of the image in degrees, counter-clockwise. :param vertices: Array of vertices defining the four corners of the image. """ __VERTICES_DTYPE = np.dtype([("x", "<f8"), ("y", "<f8"), ("z", "<f8")]) _TYPE_UID = uuid.UUID( fields=(0x77AC043C, 0xFE8D, 0x4D14, 0x81, 0x67, 0x75E300FB835A) ) _converter: type[GeoImageConversion] = GeoImageConversion def __init__( self, *, cells: np.ndarray | list | tuple | None = None, dip: float | None = None, image: str | np.ndarray | BytesIO | Image.Image | FilenameData | None = None, rotation: float | None = None, vertices: np.ndarray | list | tuple | None = None, **kwargs, ): self._cells: np.ndarray | None self._vertices: np.ndarray | None self._tag: dict[int, Any] | None = None super().__init__(**kwargs) self._image_data: FilenameData | None = None self.vertices = vertices self.image = image self.cells = cells if rotation is not None: self.rotation = rotation if dip is not None: self.dip = dip @property def cells(self) -> np.ndarray: """ Array of indices defining segments connecting vertices. """ if self._cells is None and self.on_file: self._cells = self.workspace.fetch_array_attribute(self) return self._cells @cells.setter def cells(self, indices: np.ndarray | list | tuple | None): if isinstance(indices, (list, tuple)): indices = np.array(indices, ndmin=2) if indices is None: indices = np.c_[[0, 1, 2, 0], [0, 2, 3, 0]].T.astype("uint32") if not isinstance(indices, np.ndarray): raise TypeError( "Attribute 'cells' must be provided as type numpy.ndarray, list or tuple." ) if indices.ndim != 2 or indices.shape != (2, 4): raise ValueError("Array of cells should be of shape (2, 4).") if not np.issubdtype(indices.dtype, np.integer): raise TypeError("Indices array must be of integer type") self._cells = indices if self.on_file: self.workspace.update_attribute(self, "cells")
[docs] def copy( self, parent=None, *, copy_children: bool = True, clear_cache: bool = False, mask: np.ndarray | None = None, **kwargs, ): """ Function to copy an entity to a different parent entity. :param parent: New parent for the copied object. :param copy_children: Copy children entities. :param clear_cache: Clear cache of data values. :param mask: Array of indices to sub-sample the input entity. :param kwargs: Additional keyword arguments. """ if mask is not None: warnings.warn("Masking is not supported for GeoImage objects.") new_entity = super().copy( parent=parent, copy_children=copy_children, clear_cache=clear_cache, **kwargs, ) return new_entity
[docs] def copy_from_extent( self, extent: np.ndarray, parent=None, *, copy_children: bool = True, clear_cache: bool = False, inverse: bool = False, **kwargs, ) -> GeoImage | None: """ Sub-class extension of :func:`~geoh5py.shared.entity.Entity.copy_from_extent`. """ # todo: save the temp grid in a temp workspace? if self.vertices is None: raise AttributeError("Vertices are not defined.") if self.image is None: warnings.warn("Image is not defined.") return None # transform the image to a grid grid = self.to_grid2d(parent=parent, mode="RGBA") # transform the image grid_transformed = grid.copy_from_extent( extent=extent, parent=parent, copy_children=copy_children, clear_cache=clear_cache, inverse=inverse, from_image=True, **kwargs, ) if grid_transformed is None: grid.workspace.remove_entity(grid) warnings.warn("Image could not be cropped.") return None # transform the grid back to an image image_transformed = grid_transformed.to_geoimage( keys=grid_transformed.get_data_list(), mode="RGBA", normalize=False ) grid.workspace.remove_entity(grid_transformed) grid.workspace.remove_entity(grid) return image_transformed
@property def default_vertices(self) -> np.ndarray: """ Assign the default vertices based on image pixel count """ if self.image is not None: return np.asarray( [ [0, self.image.size[1], 0], [self.image.size[0], self.image.size[1], 0], [self.image.size[0], 0, 0], [0, 0, 0], ] ).astype(float) return np.asarray( [ [0, 1, 0], [1, 1, 0], [1, 0, 0], [0, 0, 0], ] ).astype(float) @property def dip(self) -> float: """ Calculated dip of the image in degrees from the vertices position. :return: the dip angle. """ # Get rotation matrix rotation_matrix = xy_rotation_matrix(np.deg2rad(-self.rotation)) # Rotate the vertices rotated_vertices = (rotation_matrix @ self.vertices.T).T # Calculate the vector perpendicular to the rotation delta_xyz = rotated_vertices[0] - rotated_vertices[3] # Compute dip in degrees dip = np.rad2deg( np.arctan2(delta_xyz[2], np.sqrt(delta_xyz[0] ** 2 + delta_xyz[1] ** 2)) ) return dip @dip.setter def dip(self, new_dip: float): # Transform the vertices to a plane self.vertices = ( dip_points( self.vertices - self.origin, np.deg2rad(new_dip - self.dip), np.deg2rad(self.rotation), ) + self.origin )
[docs] def georeference(self, reference: np.ndarray | list, locations: np.ndarray | list): """ Georeference the image vertices (corners) based on input reference and corresponding world coordinates. :param reference: Array of integers representing the reference used as reference points. :param locations: Array of floats for the corresponding world coordinates for each input pixel. :return vertices: Corners (vertices) in world coordinates. """ reference = np.asarray(reference) locations = np.asarray(locations) if self.image is None: raise AttributeError("An 'image' must be set before georeferencing.") if reference.ndim != 2 or reference.shape[0] < 3 or reference.shape[1] != 2: raise ValueError( "Input reference points must be a 2D array of shape(*, 2) " "with at least 3 control points." ) if ( locations.ndim != 2 or reference.shape[0] != locations.shape[0] or locations.shape[1] != 3 ): raise ValueError( "Input 'locations' must be a 2D array of shape(*, 3) " "with the same number of rows as the control points." ) constant = np.ones(reference.shape[0]) param_x, _, _, _ = np.linalg.lstsq( np.c_[constant, reference], locations[:, 0], rcond=None ) param_y, _, _, _ = np.linalg.lstsq( np.c_[constant, reference], locations[:, 1], rcond=None ) param_z, _, _, _ = np.linalg.lstsq( np.c_[constant, reference], locations[:, 2], rcond=None ) corners = self.default_vertices[:, :2] self.vertices = np.c_[ param_x[0] + corners @ param_x[1:], param_y[0] + corners @ param_y[1:], param_z[0] + corners @ param_z[1:], ] self.set_tag_from_vertices()
[docs] def georeferencing_from_image(self): """ Georeferencing the GeoImage from the image. """ if self.image is not None: if self.tag is not None: self.vertices = self.default_vertices self.georeferencing_from_tiff() else: self.vertices = self.default_vertices
[docs] def georeferencing_from_tiff(self): """ Get the geographic information from the PIL Image to georeference it. Run the georeference() method of the object. """ if self.tag is None: raise AttributeError("The image is not georeferenced") try: # get geographic information u_origin = float(self.tag[33922][3]) v_origin = float(self.tag[33922][4]) u_cell_size = float(self.tag[33550][0]) v_cell_size = float(self.tag[33550][1]) u_count = float(self.tag[256][0]) v_count = float(self.tag[257][0]) u_oposite = float(u_origin + u_cell_size * u_count) v_oposite = float(v_origin - v_cell_size * v_count) # prepare georeferencing reference = np.array([[0.0, v_count], [u_count, v_count], [u_count, 0.0]]) locations = np.array( [ [u_origin, v_origin, 0.0], [u_oposite, v_origin, 0.0], [u_oposite, v_oposite, 0.0], ] ) # georeference the raster self.georeference(reference, locations) except KeyError: warnings.warn("The 'tif.' image has no referencing information.")
@property def image(self): """ Get the image as a :obj:`PIL.Image` object. """ if self.image_data is not None and self.image_data.file_bytes is not None: return Image.open(BytesIO(self.image_data.file_bytes)) return None @image.setter def image( self, image: str | np.ndarray | BytesIO | Image.Image | FilenameData | None ): if self._image_data is not None: raise AttributeError( "The 'image' property cannot be reset. " "Consider creating a new object." ) if isinstance(image, (FilenameData, type(None))): self._image_data = image return image = self.validate_image_data(image) with TemporaryDirectory() as tempdir: if image.mode not in PILLOW_ARGUMENTS: raise NotImplementedError( f"The mode {image.mode} of the image is not supported." ) temp_file = Path(tempdir) / "image" image.save(temp_file, **PILLOW_ARGUMENTS[image.mode]) image_file = self.add_file(str(temp_file)) image_file.name = "GeoImageMesh_Image" image_file.entity_type.name = "GeoImageMesh_Image" self._image_data = image_file if self._vertices is None: self.vertices = self.default_vertices # if the image is a tiff save tag information if isinstance(image, TiffImageFile): self.tag = image self.to_grid2d(name=self.name + "_grid2d") @property def image_data(self) -> FilenameData | None: """ Get the FilenameData entity holding the image. """ if self._image_data is None: for child in self.children: if ( isinstance(child, FilenameData) and child.name == "GeoImageMesh_Image" ): self._image_data = child return self._image_data @property def image_georeferenced(self) -> Image.Image | None: """ Get the image as a georeferenced :obj:`PIL.Image` object. """ if self.tag is not None and self.image is not None: image = self.image # modify the exif for id_ in self.tag: image.getexif()[id_] = self.tag[id_] return image return None
[docs] def mask_by_extent( self, extent: np.ndarray, inverse: bool = False ) -> np.ndarray | None: """ Sub-class extension of :func:`~geoh5py.shared.entity.Entity.mask_by_extent`. Uses the four corners of the image to determine overlap with the extent window. """ if self.extent is None or not box_intersect(self.extent, extent): return None return np.ones(self.vertices.shape[0], dtype=bool)
@property def n_cells(self): """ Number of vertices """ return self.cells.shape[0] @property def n_vertices(self): """ Number of vertices """ return self.vertices.shape[0] @property def origin(self) -> np.array: """ The origin of the image. :return: an array of the origin of the image in x, y, z. """ return self.vertices[3, :] @property def rotation(self) -> float: """ The rotation of the image in degrees, counter-clockwise. :return: the rotation angle. """ dxy = np.r_[np.diff(self.vertices[:2, 0]), np.diff(self.vertices[:2, 1])] dxy /= np.linalg.norm(dxy) rotation_rad = np.arctan2(dxy[1], dxy[0]) return np.rad2deg(rotation_rad) @rotation.setter def rotation(self, new_rotation): # Compute rotation matrix rotation_matrix = xy_rotation_matrix(np.deg2rad(new_rotation - self.rotation)) # get the vertices without the origin vertices = self.vertices - self.origin # get the rotation matrix vertices = rotation_matrix @ vertices.T # save the vertices self.vertices = vertices.T + self.origin
[docs] def save_as(self, name: str, path: str | Path = ""): """ Function to save the geoimage into an image file. It the name ends by '.tif' or '.tiff' and the tag is not None then the image is saved as georeferenced tiff image ; else, the image is save with PIL.Image's save function. :param name: the name to give to the image. :param path: the path of the file of the image, default: ''. """ # verifications if self.image is None: raise AttributeError("The object contains no image data") if not isinstance(name, str): raise TypeError( f"The 'name' has to be a string; a '{type(name)}' was entered instead" ) if not isinstance(path, (str, Path)): raise TypeError( f"The 'path' has to be a string or a Path; a '{type(name)}' was entered instead" ) if path != "" and not Path(path).is_dir(): raise FileNotFoundError(f"No such file or directory: {path}") if name.endswith((".tif", ".tiff")) and self.tag is not None: # save the image image: Image = self.image_georeferenced image.save(Path(path) / name, exif=image.getexif()) else: self.image.save(Path(path) / name)
[docs] def set_tag_from_vertices(self): """ If tag is None, set the basic tag values based on vertices in order to export as a georeferenced .tiff. WARNING: this function must be used after georeference(). """ if self._tag is None: self._tag = {} if self.image is None: raise AttributeError("An 'image' must be set before georeferencing.") width, height = self.image.size self._tag[256] = (width,) self._tag[257] = (height,) self._tag[33922] = ( 0.0, 0.0, 0.0, self.vertices[0, 0], self.vertices[0, 1], self.vertices[0, 2], ) self._tag[33550] = ( abs(self.vertices[1, 0] - self.vertices[0, 0]) / width, abs(self.vertices[0, 1] - self.vertices[2, 1]) / height, 0.0, )
@property def tag(self) -> dict | None: """ Georeferencing information of a tiff image stored in the header. :return: a dictionary containing the PIL.Image.tag information. """ if self._tag: return self._tag.copy() return None @tag.setter def tag(self, value: Image.Image | dict | None): if isinstance(value, (Image.Image, TiffImageFile)): self._tag = dict(value.tag) elif isinstance(value, dict): self._tag = value elif value is None: self._tag = None else: raise ValueError("Input 'tag' must be a PIL.Image")
[docs] def to_grid2d( self, mode: str | None = None, **grid2d_kwargs, ) -> Grid2D: """ Create a geoh5py :obj:geoh5py.objects.grid2d.Grid2D from the geoimage in the same workspace. :param mode: The output image mode, defaults to the incoming image.mode. If "GRAY" convert the image to grayscale. :param grid2d_kwargs: Keyword arguments to pass to the :obj:`geoh5py.objects.grid2d.Grid2D` constructor. :return: the new created :obj:`geoh5py.objects.grid2d.Grid2D`. """ return self.converter.to_grid2d(self, mode, **grid2d_kwargs)
[docs] def validate_image_data( self, image: str | np.ndarray | BytesIO | Image.Image | FilenameData | None ) -> Image.Image: """ Validate the input image. :param image: Image to validate. :return: Image converted to FileNameData object. """ # todo: this should be changed in the future to accept tiff images if isinstance(image, np.ndarray) and image.ndim in [2, 3]: if image.ndim == 3 and image.shape[2] != 3: raise ValueError( "Shape of the 'image' must be a 2D or " "a 3D array with shape(*,*, 3) representing 'RGB' values." ) value = image if image.min() < 0 or image.max() > 255 or image.dtype != "uint8": value = image.astype(float) value -= value.min() value *= 255.0 / value.max() value = value.astype("uint8") image = Image.fromarray(value) elif isinstance(image, str): if not Path(image).is_file(): raise ValueError(f"Input image file {image} does not exist.") image = Image.open(image) elif isinstance(image, bytes): image = Image.open(BytesIO(image)) elif not isinstance(image, Image.Image): raise ValueError( "Input 'value' for the 'image' property must be " "a 2D or 3D numpy.ndarray, bytes, PIL.Image or a path to an existing image." f"Get type {type(image)} instead." ) return image
@property def vertices(self) -> np.ndarray: """ :obj:`~geoh5py.objects.object_base.ObjectBase.vertices`: Defines the four corners of the geo_image """ # Case the vertices were removed from the object if self._vertices is None and self.on_file: self._vertices = self.workspace.fetch_array_attribute(self, "vertices") # Case where the vertices are not set but the image is defined if self._vertices is None and self.tag is not None and self.image is not None: self.vertices = self.default_vertices self.georeferencing_from_tiff() # Case neither vertices nor image are set if self._vertices is None: return self.default_vertices return self._vertices.view("<f8").reshape((-1, 3)).astype(float) @vertices.setter def vertices(self, xyz: np.ndarray | list | None): if xyz is None: self._vertices = None return if isinstance(xyz, list | tuple): xyz = np.array(xyz, ndmin=2) if not isinstance(xyz, np.ndarray): raise TypeError( "Input 'vertices' must be provided as type numpy.ndarray, list or tuple." ) if np.issubdtype(xyz.dtype, np.number): xyz = np.asarray( np.core.records.fromarrays(xyz.T, dtype=self.__VERTICES_DTYPE) ) if xyz.dtype != self.__VERTICES_DTYPE: raise TypeError( f"Array of 'vertices' must be of dtype = {self.__VERTICES_DTYPE}" ) if len(xyz) != 4: raise ValueError("Array of 'vertices' must be of shape (4, 3).") self._vertices = xyz self._tag = None if self.on_file: self.workspace.update_attribute(self, "vertices")