Source code for geoh5py.objects.cell_object

# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
#  Copyright (c) 2025 Mira Geoscience Ltd.                                     '
#                                                                              '
#  This file is part of geoh5py.                                               '
#                                                                              '
#  geoh5py is free software: you can redistribute it and/or modify             '
#  it under the terms of the GNU Lesser General Public License as published by '
#  the Free Software Foundation, either version 3 of the License, or           '
#  (at your option) any later version.                                         '
#                                                                              '
#  geoh5py is distributed in the hope that it will be useful,                  '
#  but WITHOUT ANY WARRANTY; without even the implied warranty of              '
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the               '
#  GNU Lesser General Public License for more details.                         '
#                                                                              '
#  You should have received a copy of the GNU Lesser General Public License    '
#  along with geoh5py.  If not, see <https://www.gnu.org/licenses/>.           '
# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''


from __future__ import annotations

from abc import ABC, abstractmethod
from uuid import UUID

import numpy as np

from ..data import Data, DataAssociationEnum
from ..groups import PropertyGroup
from ..shared.utils import box_intersect, mask_by_extent
from .points import Points


[docs] class CellObject(Points, ABC): """ Base class for object with cells. :param cells: Array of indices defining connecting vertices. """ _attribute_map: dict = Points._attribute_map.copy() _TYPE_UID: UUID | None = None def __init__( self, cells: np.ndarray | list | tuple | None = None, **kwargs, ): super().__init__(**kwargs) self._cells = self.validate_cells(cells) @property def cells(self) -> np.ndarray: """ Array of indices defining connecting vertices. """ if self._cells is None and self.on_file: self._cells = self.workspace.fetch_array_attribute(self, "cells") return self._cells @cells.setter def cells(self, cells: np.ndarray | list | tuple): cells = self.validate_cells(cells) if self._cells is not None and self._cells.shape != cells.shape: raise ValueError( "New cells array must have the same shape as the current cells array." ) self._cells = cells self.workspace.update_attribute(self, "cells") @property def centroids(self) -> np.ndarray | None: """ Compute the centroids of the cells. """ return np.mean(self.vertices[self.cells], axis=1) @property def locations(self): return self.vertices
[docs] def mask_by_extent( self, extent: np.ndarray, inverse: bool = False, ) -> np.ndarray | None: """ Extension of :func:`~geoh5py.shared.entity.Entity.mask_by_extent`. """ if self.extent is None or not box_intersect(self.extent, extent): return None vert_mask = mask_by_extent(self.vertices, extent, inverse=inverse) # Check for orphan vertices cell_mask = np.all(vert_mask[self.cells], axis=1) orphan_mask = np.zeros_like(vert_mask, dtype=bool) orphan_mask[self.cells[cell_mask].flatten()] = True vert_mask &= orphan_mask if ~np.any(vert_mask): return None return vert_mask
@property def n_cells(self) -> int: """ Number of vertices """ return self.cells.shape[0]
[docs] def remove_cells(self, indices: list[int] | np.ndarray, clear_cache: bool = False): """ Safely remove cells and corresponding data entries. :param indices: Indices of cells to be removed. :param clear_cache: Clear cache of data values. """ if isinstance(indices, (list, tuple)): indices = np.array(indices) if not isinstance(indices, np.ndarray): raise TypeError("Indices must be a list or numpy array.") if ( isinstance(self.cells, np.ndarray) and np.max(indices) > self.cells.shape[0] - 1 ): raise ValueError("Found indices larger than the number of cells.") cells = np.delete(self.cells, indices, axis=0) self.load_children_values() self._cells = self.validate_cells(cells) self._remove_children_values( indices, DataAssociationEnum.CELL, clear_cache=clear_cache ) self.workspace.update_attribute(self, "cells")
[docs] def remove_vertices( self, indices: list[int] | np.ndarray, clear_cache: bool = False ): """ Safely remove vertices and cells and corresponding data entries. :param indices: Indices of vertices to be removed. :param clear_cache: Clear cache of data values. """ n_vertices = self.vertices.shape[0] super().remove_vertices(indices, clear_cache=clear_cache) vert_index = np.ones(n_vertices, dtype=bool) vert_index[indices] = False new_index = np.ones_like(vert_index, dtype=int) new_index[vert_index] = np.arange(self.vertices.shape[0]) cell_mask = np.where(~np.all(vert_index[self.cells], axis=1)) self._cells = new_index[self.cells] self.remove_cells(cell_mask) self.workspace.update_attribute(self, "cells")
[docs] def copy( # pylint: disable=too-many-branches self, parent=None, *, copy_children: bool = True, clear_cache: bool = False, mask: np.ndarray | None = None, cell_mask: np.ndarray | None = None, **kwargs, ): """ Sub-class extension of :func:`~geoh5py.objects.points.Points.copy`. Additions: cell_mask: Array of indices to sub-sample the input entity cells. """ if mask is not None and self.vertices is not None: if not isinstance(mask, np.ndarray) or mask.shape != ( self.vertices.shape[0], ): raise ValueError("Mask must be an array of shape (n_vertices,).") kwargs.update({"vertices": self.vertices[mask, :]}) new_cells = getattr(self, "cells", None) if mask is not None: new_id = np.ones_like(mask, dtype=int) new_id[mask] = np.arange(np.sum(mask)) if cell_mask is None: cell_mask = np.all(mask[self.cells], axis=1) new_cells = new_id[self.cells] if cell_mask is not None and new_cells is not None: new_cells = new_cells[cell_mask, :] kwargs.update( { "cells": new_cells, } ) new_object = super().copy( parent=parent, copy_children=False, clear_cache=clear_cache, mask=mask, **kwargs, ) if copy_children: children_map = {} for child in self.children: if isinstance(child, PropertyGroup): continue if isinstance(child, Data): if child.name in ["A-B Cell ID"]: continue child_mask = mask if ( child.association is DataAssociationEnum.CELL and cell_mask is not None ): child_mask = cell_mask elif child.association is not DataAssociationEnum.VERTEX: child_mask = None child_copy = child.copy( parent=new_object, clear_cache=clear_cache, mask=child_mask, ) else: child_copy = self.workspace.copy_to_parent( child, new_object, clear_cache=clear_cache ) children_map[child.uid] = child_copy.uid if self.property_groups: self.workspace.copy_property_groups( new_object, self.property_groups, children_map ) return new_object
[docs] @abstractmethod def validate_cells(self, indices: list | tuple | np.ndarray | None) -> np.ndarray: """ Validate or generate cells defining the connection between vertices. :param indices: Array of indices. If None provided, the vertices are connected sequentially. :return: Array of indices defining connected vertices. """