Source code for geoh5py.data.numeric_data
# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
# Copyright (c) 2025 Mira Geoscience Ltd. '
# '
# This file is part of geoh5py. '
# '
# geoh5py is free software: you can redistribute it and/or modify '
# it under the terms of the GNU Lesser General Public License as published by '
# the Free Software Foundation, either version 3 of the License, or '
# (at your option) any later version. '
# '
# geoh5py is distributed in the hope that it will be useful, '
# but WITHOUT ANY WARRANTY; without even the implied warranty of '
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the '
# GNU Lesser General Public License for more details. '
# '
# You should have received a copy of the GNU Lesser General Public License '
# along with geoh5py. If not, see <https://www.gnu.org/licenses/>. '
# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
from __future__ import annotations
from abc import ABC, abstractmethod
from copy import deepcopy
from warnings import warn
import numpy as np
from .data import Data, PrimitiveTypeEnum
from .data_association_enum import DataAssociationEnum
[docs]
class NumericData(Data, ABC):
"""
Data container for floats values
"""
[docs]
@classmethod
def primitive_type(cls) -> PrimitiveTypeEnum:
return PrimitiveTypeEnum.INVALID
@property
@abstractmethod
def ndv(self):
"""No-data-value"""
@property
def ndv_values(self) -> np.ndarray | None:
"""
Data with nan replaced by ndv
"""
if self.values is None:
return None
values = deepcopy(self.values)
values[np.isnan(values)] = self.ndv
return values
[docs]
def validate_values(self, values: np.ndarray | None) -> np.ndarray:
"""
Check for possible mismatch between the length of values
stored and the expected number of cells or vertices.
:param values: Array of values to check
:returns: values: An array of float values of length n_values or None
"""
if values is None:
return values
if not isinstance(values, np.ndarray):
raise TypeError("Input 'values' must be a numpy array.")
if values.ndim > 1:
values = np.ravel(values)
warn("Input 'values' converted to a 1D array.")
values = values.astype(float)
# change nan values to nan_value
values[np.isnan(values)] = self.nan_value
# check the length of the values
values = self.format_length(values)
# check the value type
values = self.format_type(values)
return values