Source code for geoh5py.data.data_type

# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
#  Copyright (c) 2025 Mira Geoscience Ltd.                                     '
#                                                                              '
#  This file is part of geoh5py.                                               '
#                                                                              '
#  geoh5py is free software: you can redistribute it and/or modify             '
#  it under the terms of the GNU Lesser General Public License as published by '
#  the Free Software Foundation, either version 3 of the License, or           '
#  (at your option) any later version.                                         '
#                                                                              '
#  geoh5py is distributed in the hope that it will be useful,                  '
#  but WITHOUT ANY WARRANTY; without even the implied warranty of              '
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the               '
#  GNU Lesser General Public License for more details.                         '
#                                                                              '
#  You should have received a copy of the GNU Lesser General Public License    '
#  along with geoh5py.  If not, see <https://www.gnu.org/licenses/>.           '
# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''


# pylint: disable=too-many-arguments, too-many-instance-attributes

from __future__ import annotations

from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Literal, get_args
from uuid import UUID

import numpy as np

from ..shared import EntityType, utils
from .color_map import ColorMap
from .primitive_type_enum import PrimitiveTypeEnum
from .reference_value_map import BOOLEAN_VALUE_MAP, ReferenceValueMap


if TYPE_CHECKING:  # pragma: no cover
    from ..objects import ObjectBase
    from ..workspace import Workspace
    from .data import Data
    from .referenced_data import ReferencedData

ColorMapping = Literal[
    "linear",
    "equal_area",
    "logarithmic",
    "cdf",
    "cumulative_distribution_function",
    "missing",
]


[docs] class DataType(EntityType): """ DataType class. Controls all the attributes of the data type for displays in Geoscience ANALYST. :param workspace: An active Workspace. :param primitive_type: The primitive type of the data. :param color_map: The colormap used for plotting. :param duplicate_on_copy: Force a copy on copy of the data entity. :param duplicate_type_on_copy: Force a copy on copy of the data entity. :param hidden: If the data are hidden or not. :param mapping: The type of color stretching to plot the colormap. :param number_of_bins: The number of bins used by the histogram. :param precision: The decimals precision of the data to display. :param scale: The type of scale of the data. :param scientific_notation: If the data should be displayed in scientific notation. :param transparent_no_data: If the no data values are displayed as transparent or not. :param units: The type of the units of the data. :param kwargs: Additional keyword arguments to set as attributes (see :obj:`...shared.entity_type.EntityType`). """ _attribute_map = EntityType._attribute_map.copy() _attribute_map.update( { "Hidden": "hidden", "Mapping": "mapping", "Number of bins": "number_of_bins", "Precision": "precision", "Primitive type": "primitive_type", "Transparent no data": "transparent_no_data", "Scale": "scale", "Scientific notation": "scientific_notation", } ) def __init__( self, workspace: Workspace, *, primitive_type: ( type[Data] | PrimitiveTypeEnum | str ) = PrimitiveTypeEnum.INVALID, color_map: ColorMap | None = None, duplicate_on_copy: bool = False, duplicate_type_on_copy: bool = False, hidden: bool = False, mapping: ColorMapping = "equal_area", number_of_bins: int | None = None, precision: int = 2, scale: str | None = None, scientific_notation: bool = False, transparent_no_data: bool = True, units: str | None = None, **kwargs, ): super().__init__(workspace, **kwargs) self.color_map = color_map self.duplicate_on_copy = duplicate_on_copy self.duplicate_type_on_copy = duplicate_type_on_copy self.hidden = hidden self.mapping = mapping self.number_of_bins = number_of_bins self.precision = precision self.primitive_type = self.validate_primitive_type(primitive_type) self.scale = scale self.scientific_notation = scientific_notation self.transparent_no_data = transparent_no_data self.units = units @property def color_map(self) -> ColorMap | None: r""" The Colormap used for plotting The colormap can be set from a dictionary of sorted values with corresponding RGBA color. Or from a numpy array containing the RGBA values. .. code-block:: python color_map = { val_1: [r_1, g_1, b_1, a_1], ..., val_i: [r_i, g_i, b_i, a_i] } It can be set to None if non-existing. """ return self._color_map @color_map.setter def color_map(self, color_map: ColorMap | dict | np.ndarray | None): if isinstance(color_map, dict): color_map = ColorMap(**color_map) elif isinstance(color_map, np.ndarray): color_map = ColorMap(values=color_map) if not isinstance(color_map, (ColorMap, type(None))): raise TypeError( f"Attribute 'color_map' must be of type {ColorMap}," f"numpy.ndarray or dict with 'values'." ) if isinstance(color_map, ColorMap): color_map.parent = self self._color_map: ColorMap | None = color_map self.workspace.update_attribute(self, "color_map") @property def duplicate_on_copy(self) -> bool: """ If the data type should be duplicated on copy. """ return self._duplicate_on_copy @duplicate_on_copy.setter def duplicate_on_copy(self, value: bool): if not isinstance(value, bool) and value not in [1, 0]: raise TypeError( f"Attribute 'duplicate_on_copy' must be a bool, not {type(value)}" ) self._duplicate_on_copy = bool(value) if self.on_file: self.workspace.update_attribute(self, "attributes") @property def duplicate_type_on_copy(self) -> bool: """ If the data type should be duplicated on copy. """ return self._duplicate_type_on_copy @duplicate_type_on_copy.setter def duplicate_type_on_copy(self, value: bool): if not isinstance(value, bool) and value != 1 and value != 0: raise TypeError( f"Attribute 'duplicate_type_on copy' must be a bool, not {type(value)}" ) self._duplicate_type_on_copy = bool(value) self.workspace.update_attribute(self, "attributes")
[docs] @classmethod def find_or_create_type( cls, workspace: Workspace, primitive_type: PrimitiveTypeEnum | str, dynamic_implementation_id: str | UUID | None = None, uid: UUID | None = None, **kwargs, ) -> DataType: """ Get the data type for geometric data. :param workspace: An active Workspace class :param primitive_type: The primitive type of the data. :param uid: The unique identifier of the entity type. :param kwargs: The attributes of the entity type. :return: EntityType """ if uid is not None: entity_type = DataType.find(workspace, uid) if entity_type is not None: return entity_type primitive_type = cls.validate_primitive_type(primitive_type) if primitive_type == PrimitiveTypeEnum.BOOLEAN: return ReferencedBooleanType( workspace, primitive_type=primitive_type, uid=uid, **kwargs ) if ( primitive_type == PrimitiveTypeEnum.GEOMETRIC and dynamic_implementation_id is not None ): data_type = DYNAMIC_CLASS_IDS.get( utils.str2uuid(dynamic_implementation_id), DataType ) return data_type( workspace, primitive_type=primitive_type, uid=uid, **kwargs ) if primitive_type == PrimitiveTypeEnum.REFERENCED: return ReferencedValueMapType( workspace, primitive_type=primitive_type, uid=uid, **kwargs ) return cls(workspace, primitive_type=primitive_type, uid=uid, **kwargs)
@property def hidden(self) -> bool: """ If the data are hidden or not. """ return self._hidden @hidden.setter def hidden(self, value: bool): if not isinstance(value, bool) and value != 1 and value != 0: raise TypeError(f"Attribute 'hidden' must be a bool, not {type(value)}") self._hidden: bool = bool(value) self.workspace.update_attribute(self, "attributes") @property def mapping(self) -> str: """ The type of color stretching to plot the colormap. It chan be one of the following: 'linear', 'equal_area', 'logarithmic', 'cdf', 'missing' """ return self._mapping @mapping.setter def mapping(self, value: ColorMapping): if value not in get_args(ColorMapping): raise ValueError( f"Attribute 'mapping' should be one of {get_args(ColorMapping)}. " f"Value '{value}' was provided." ) self._mapping: str = value self.workspace.update_attribute(self, "attributes") @property def number_of_bins(self) -> int | None: """ The number of bins used by the histogram. It can be None if no histogram is used. """ return self._number_of_bins @number_of_bins.setter def number_of_bins(self, n_bins: int | None): if n_bins is None: pass elif not isinstance(n_bins, (int, np.integer)) or n_bins < 1: raise ValueError( "Attribute 'number_of_bins' should be an integer greater than 0 " f"or None, not {n_bins}" ) self._number_of_bins: int | None = n_bins self.workspace.update_attribute(self, "attributes") @property def precision(self) -> int: """ The decimals precision of the data to display. """ return self._precision @precision.setter def precision(self, value: int): if ( not isinstance(value, (int, float, np.integer, np.floating)) or (isinstance(value, (float, np.floating)) and not value.is_integer()) or value < 0 ): raise TypeError( f"Attribute 'precision' must be an integer greater than 0, not {value}" ) self._precision = int(value) self.workspace.update_attribute(self, "attributes") @property def primitive_type(self) -> PrimitiveTypeEnum: """ The primitive type of the data. """ return self._primitive_type @primitive_type.setter def primitive_type(self, value: PrimitiveTypeEnum): if not isinstance(value, PrimitiveTypeEnum): raise ValueError( "Attribute 'primitive_type' value must be of type " f"{PrimitiveTypeEnum}, find {type(value)}" ) self._primitive_type = value @property def transparent_no_data(self) -> bool: """ If the no data values are displayed as transparent or not. """ return self._transparent_no_data @transparent_no_data.setter def transparent_no_data(self, value: bool): if not isinstance(value, bool) and value != 1 and value != 0: raise TypeError( f"Attribute 'transparent_no_data' must be a bool, not {type(value)}" ) self._transparent_no_data = bool(value) self.workspace.update_attribute(self, "attributes") @property def units(self) -> str | None: """ The type of the units of the data. """ return self._units @units.setter def units(self, unit: str | None): if not isinstance(unit, (str, type(None))): raise TypeError(f"Attribute 'units' must be a string, not {type(unit)}") self._units = unit self.workspace.update_attribute(self, "attributes")
[docs] @staticmethod def primitive_type_from_values(values: np.ndarray | None) -> PrimitiveTypeEnum: """ Validate the primitive type of the data. :param values: The values to validate. :return: The equivalent primitive type of the data. """ if values is None or ( isinstance(values, np.ndarray) and np.issubdtype(values.dtype, np.floating) ): primitive_type = PrimitiveTypeEnum.FLOAT elif isinstance(values, np.ndarray) and ( np.issubdtype(values.dtype, np.integer) ): primitive_type = PrimitiveTypeEnum.INTEGER elif isinstance(values, str) or ( isinstance(values, np.ndarray) and values.dtype.kind in ["U", "S"] ): primitive_type = PrimitiveTypeEnum.TEXT elif isinstance(values, np.ndarray) and (values.dtype == bool): primitive_type = PrimitiveTypeEnum.BOOLEAN else: raise NotImplementedError( "Only add_data values of type FLOAT, INTEGER," "BOOLEAN and TEXT have been implemented" ) return primitive_type
@property def scale(self) -> str | None: """ The type of scale of the data. """ return self._scale @scale.setter def scale(self, value: str | None): if value not in ["Linear", "Log", None]: raise ValueError( f"Attribute 'scale' must be one of 'Linear', 'Log', NoneType, not {value}" ) self._scale = value self.workspace.update_attribute(self, "attributes") @property def scientific_notation(self) -> bool: """ If the data should be displayed in scientific notation. """ return self._scientific_notation @scientific_notation.setter def scientific_notation(self, value: bool): if value not in [True, False, 1, 0]: raise TypeError( f"Attribute 'scientific_notation' must be a bool, not {type(value)}" ) self._scientific_notation = bool(value) self.workspace.update_attribute(self, "attributes")
[docs] @staticmethod def validate_primitive_type( primitive_type: PrimitiveTypeEnum | str | type[Data], ) -> PrimitiveTypeEnum: """ Validate the primitive type of the data. :param primitive_type: Some reference to the primitive type of the data. :return: A known primitive type. """ if isinstance(primitive_type, str): primitive_type = getattr( PrimitiveTypeEnum, utils.INV_KEY_MAP.get(primitive_type, primitive_type) ) if isinstance(primitive_type, type) and hasattr( primitive_type, "primitive_type" ): primitive_type = primitive_type.primitive_type() if not isinstance(primitive_type, PrimitiveTypeEnum): raise ValueError( f"Attribute 'primitive_type' should be one of {PrimitiveTypeEnum.__members__}" ) return primitive_type
[docs] class ReferenceDataType(DataType): """ DataType class. Controls all the attributes of reference data. :param value_map: Reference value to map index with description. """ def __init__( self, workspace: Workspace, value_map: dict[int, str] | np.ndarray | tuple | ReferenceValueMap = ( (0, "Unknown"), ), **kwargs, ): super().__init__(workspace, **kwargs) self.value_map = self.validate_value_map(value_map)
[docs] @staticmethod @abstractmethod def validate_keys(value_map: ReferenceValueMap) -> ReferenceValueMap: """ Validate the keys of the value map. """
[docs] def validate_value_map( self, value_map: dict[int, str] | np.ndarray | tuple | ReferenceValueMap, ) -> ReferenceValueMap | None: """ Validate the attribute of ReferencedDataType """ if value_map is None: return None if isinstance(value_map, dict | np.ndarray | tuple): value_map = ReferenceValueMap(value_map) if not isinstance(value_map, ReferenceValueMap): raise TypeError( "Attribute 'value_map' must be provided as a dict, tuple[dict], " f"numpy.ndarray or {ReferenceValueMap}." ) self.validate_keys(value_map) return value_map
@property def value_map(self) -> ReferenceValueMap | None: r""" Reference value map for to map index with description. The value_map can be set from a dictionary of sorted values int values with text description. .. code-block:: python value_map = { val_1: str_1, ..., val_i: str_i } """ return self._value_map @value_map.setter def value_map( self, value_map: dict[int, str] | np.ndarray | tuple | ReferenceValueMap ): self._value_map = self.validate_value_map(value_map) if self.on_file: self.workspace.update_attribute(self, "value_map")
[docs] class ReferencedValueMapType(ReferenceDataType): """ Data container for referenced value map. """ _TYPE_UID = UUID(fields=(0x2D5D6C1E, 0x4D8C, 0x4F3A, 0x9B, 0x3F, 0x2E5A0D8E1C1F)) def __init__( self, workspace: Workspace, **kwargs, ): super().__init__(workspace, **kwargs)
[docs] @staticmethod def validate_keys(value_map: ReferenceValueMap): """ Validate the keys of the value map. """ if 0 not in value_map.map["Key"]: value_map.map.resize(len(value_map) + 1, refcheck=False) value_map.map[-1] = (0, b"Unknown") if dict(value_map.map)[0] not in ["Unknown", b"Unknown"]: raise ValueError("Value for key 0 must be b'Unknown'")
[docs] class ReferencedBooleanType(ReferenceDataType): """ Data container for referenced boolean data. """ def __init__( self, workspace: Workspace, value_map: ( dict[int, str] | np.ndarray | tuple | ReferenceValueMap ) = BOOLEAN_VALUE_MAP, **kwargs, ): super().__init__(workspace, value_map=value_map, **kwargs)
[docs] @staticmethod def validate_keys(value_map: ReferenceValueMap): """ Validate the keys of the value map. """ if not np.all(value_map.map == BOOLEAN_VALUE_MAP): raise ValueError("Boolean value map must be (0: 'False', 1: 'True'")
[docs] class GeometricDynamicDataType(DataType, ABC): """ Data container for dynamic geometric data. """ _attribute_map = DataType._attribute_map.copy() _attribute_map.update( { "Dynamic implementation ID": "dynamic_implementation_id", } ) _TYPE_UID: UUID | None _DYNAMIC_IMPLEMENTATION_ID: UUID def __init__( self, workspace: Workspace, uid: UUID | None = None, **kwargs, ): if uid is None: uid = self._TYPE_UID super().__init__(workspace, uid=uid, **kwargs)
[docs] @classmethod def default_type_uid(cls) -> UUID | None: """ Default uuid for the entity type. """ return cls._TYPE_UID
@property def dynamic_implementation_id(self) -> UUID: """ The dynamic implementation id. """ return self._DYNAMIC_IMPLEMENTATION_ID
[docs] class GeometricDataValueMapType(ReferenceDataType, GeometricDynamicDataType): """ Data container for value map """ _DYNAMIC_IMPLEMENTATION_ID = UUID("{4b6ecb37-0623-4ea0-95f1-4873008890a8}") _TYPE_UID = None def __init__( self, workspace: Workspace, *, value_map: dict[int, str] | tuple | ReferenceValueMap | None = None, parent: ObjectBase | None = None, description: str = "Dynamic referenced data", primitive_type: PrimitiveTypeEnum | str = PrimitiveTypeEnum.GEOMETRIC, **kwargs, ): self._referenced_data = None super().__init__( workspace, value_map=value_map, description=description, primitive_type=primitive_type, **kwargs, ) self._parent = parent
[docs] def get_parent_reference(self, parent: ObjectBase): """ Recover the parent ReferencedData by name. """ ref_data_name = self.name.rsplit(":")[0] ref_data = [] for child in parent.children: if ( isinstance(child.entity_type, ReferencedValueMapType) and child.entity_type.name == ref_data_name ): ref_data.append(child) if len(ref_data) == 0: raise ValueError(f"Parent data '{ref_data_name}' not found.") return ref_data[0]
@property def referenced_data(self) -> ReferencedData | None: """ Reference data type holding the value map. """ if self._referenced_data is None and self._parent is not None: self._referenced_data = self.get_parent_reference(self._parent) return self._referenced_data
[docs] @staticmethod def validate_keys(value_map: ReferenceValueMap): """ Validate the keys of the value map. """
[docs] def validate_value_map( self, value_map: dict[int, str] | np.ndarray | tuple | ReferenceValueMap, ) -> ReferenceValueMap | None: """ Validate the attribute of ReferencedDataType """ if value_map is None: return None if isinstance(value_map, dict | np.ndarray | tuple): value_map = ReferenceValueMap(value_map, name=self.name.rsplit(": ")[1]) if not isinstance(value_map, ReferenceValueMap): raise TypeError( "Attribute 'value_map' must be provided as a dict, tuple[dict] " f"or {ReferenceValueMap}." ) return value_map
@property def value_map(self) -> ReferenceValueMap | None: r""" Reference value to map index with description. The value_map can be set from a dictionary of sorted integer values with text description. .. code-block:: python value_map = { val_1: str_1, ..., val_i: str_i } """ if self._value_map is None and self.referenced_data is not None: if ( self.referenced_data.data_maps is None or self.referenced_data.metadata is None ): raise ValueError("Referenced data has no data maps.") value_map = None for count, name in enumerate(self.referenced_data.metadata): if name == self.name.rsplit(": ")[1]: value_map = self.workspace.fetch_array_attribute( self.referenced_data.entity_type, f"Value map {count + 1}" ) if value_map is not None: self._value_map = self.validate_value_map( value_map.astype(ReferenceValueMap.MAP_DTYPE) ) return self._value_map @value_map.setter def value_map(self, value_map: dict | tuple | ReferenceValueMap | None): self._value_map = self.validate_value_map(value_map) if self.on_file and self.referenced_data is not None: self.workspace.update_attribute(self.referenced_data, "data_map")
[docs] class GeometricDataXType(GeometricDynamicDataType): """ Data container for X values """ _DYNAMIC_IMPLEMENTATION_ID = UUID("{2dbf303e-05d6-44ba-9692-39474e88d516}") _TYPE_UID = UUID(fields=(0xE9E6B408, 0x4109, 0x4E42, 0xB6, 0xA8, 0x685C37A802EE))
[docs] class GeometricDataYType(GeometricDynamicDataType): """ Data container for Y values """ _DYNAMIC_IMPLEMENTATION_ID = UUID("{d56406dc-5eeb-418d-add4-a1282a6ef668}") _TYPE_UID = UUID(fields=(0xF55B07BD, 0xD8A0, 0x4DFF, 0xBA, 0xE5, 0xC975D490D71C))
[docs] class GeometricDataZType(GeometricDynamicDataType): """ Data container for Z values """ _DYNAMIC_IMPLEMENTATION_ID = UUID("{9dacdc3b-6878-408d-93ae-e9a95e640f0c}") _TYPE_UID = UUID(fields=(0xDBAFB885, 0x1531, 0x410C, 0xB1, 0x8E, 0x6AC9A40B4466))
DYNAMIC_CLASS_IDS = { cls._DYNAMIC_IMPLEMENTATION_ID: cls # pylint: disable=protected-access for cls in GeometricDynamicDataType.__subclasses__() }